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Introduction

The portfolio execution cost problem is to minimize the total cost and risk of executing a
portfolio of risky assets in several periods. Execution costs are defined by price impact
functions, whose estimation is rather challenging and likely erroneous. These estimation
errors may severely affect the optimal strategy and the efficient frontier. This motivates
the need for a robust approach. However, the common practice of min-max robust opti-
mization might be unstable with respect to changes in the uncertainty set. We propose a
novel regularized robust optimization approach for the problem and study its implications.

Portfolio Execution Cost Problem

• Trading large volumes impacts the prices in two ways:

Figure 1: Effect of (large) trades on market prices and execution prices during the course of trading.

Execution Price Dynamic P̃k = Pk−1 −
H

τ
nk

Market Price Dynamic Pk = Pk−1 + τ1/2ΣBk −Gnk

nk : amount traded at period k, τ : time length between two consecutive trades,

Σ : volatility matrix of asset prices, Bk : stochastic Brownian motion.
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�H : Temporary impact matrix, G : Permanent impact matrix

• For a liquidation of S̄ shares of a portfolio of m assets within N periods:

min
(n1,n2,...,nN)∈X

E

PT0 S̄ − N∑
k=1

nTk P̃k

 + µ · Var

PT0 S̄ − N∑
k=1

nTk P̃k

 s.t.
N∑
k=1

nk = S̄

where X is the set of feasible trading strategies, and

P0 : initial price, µ : risk aversion parameter.

• This is a quadratic programming problem. It can be rewritten as
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z∈X
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S̄THS̄ +
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zTW (H,G, µ)z + bT (H,G)z

where z = (S̄ − n1; S̄ − n1 − n2; . . . ; S̄ −
∑N−1
k=1 nk)T ∈ Rm(N−1).

• Estimating impact matrices H and G is rather challenging, partly due to data limita-
tions and price dependent strategies. The literature dealing with improved methods to
estimate price impact functions is scarce.
• Theoretical analysis suggests that errors in estimating impact matrices might severely

affect the optimal trading strategy and the efficient frontier [1]. This effect reduces when
the minimum eigenvalue of the Hessian, W , is large.
•One of the principal methods to address data uncertainty is the robust optimization.

Stability in Robust Optimization

• In robust optimization, data uncertainty is described using an uncertainty set which in-
cludes all or most possible realizations of the uncertain input parameters.
•Given a (convex and bounded) uncertainty set U , the robust optimization yields a solu-

tion that performs ”reasonably well” under all possible realizations of the uncertain input
parameters (e.g., see [2]).

Figure 2: Robust Optimization Scheme

• For the execution cost problem with uncertain impact matrices, the scheme solves
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z∈X

max
(H̃,G̃)∈U
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τ
S̄T H̃S̄ +
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2
zTW (H̃, G̃, µ)z + bT (H̃, G̃)z.

Definition [3]: An optimization scheme to handle deterministic uncertainty is called stable
w.r.t. the set-distance metric d(., .), if given some ε > 0,

∃β > 0 s.t. ‖x− y‖2 < β, ∀Û s.t. d(Û ,U) < ε.

where x and y are the optimal solutions obtained from the optimization scheme corre-
sponding to the uncertainty sets U and Û , respectively.

Robust optimization scheme might be unstable!

Figure 3: Comparing the sensitivity of the efficient frontier to perturbations in the nominal impact matrices versus perturbations

in the boundaries of the uncertainty sets U of the Impact Matrices.

Main Idea: Regularized Robust Optimization

•Given an uncertainty set U , construct a regularized uncertainty set by including an ap-
propriate regularization constraint. This regularized uncertainty set is then used in the
min-max robust optimization scheme.

Figure 2: Regularized Robust Optimization Scheme

• For the execution cost problem with uncertain impact matrices, given an uncertainty set
U and the regularization parameter ρ > 0, we construct the regularized uncertainty set:

Uρ =
{

(H̃, G̃) ∈ U | λmin(W (H̃, G̃, 0)) ≥ ρ
}

• The regularized uncertainty set preserves the convexity of the uncertainty set U .

Figure 2: Regularized uncertainty set Uρ (pink area) versus the uncertainty set U (blue area) for a single asset trading.

It can be shown that regularized robust optimization is stable!

Implications of the Proposed Approach

• An optimal strategy of the regularized robust optimization approach is found by solving'
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S̄T H̃S̄ +
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zTW (H̃, G̃, µ)z + bT (H̃, G̃)z.

•When X is convex and W � 0, the regularized robust formulation is a convex problem.
•When X is compact and convex, the min-max problem has a unique saddle point.
• The regularized robust formulation can be solved using an interior-point method [4].
• Theorem: The difference between the optimal trading strategy n∗ of the regularized

robust optimization scheme and the naive strategy nk = S̄
N satisfies∥∥∥∥n∗ − S̄

N

∥∥∥∥
2

≤

((
ν

ρ + 2µτλmin (ΣΣT )

)2

− 1

N

)1/2

‖S̄‖2,

where the constant ν > 0 is determined by N and the uncertainty set U .

The diversification of the optimal strategy can be adjusted by ρ!

• Theorem: Let ρ1 and ρ2 be two regularization parameters where ρ1 ≤ ρ2. Then the
robust frontier corresponding to ρ2 is always settled below the one corresponding to ρ1.

The conservativeness of the optimal strategy can be adjusted by ρ!

• Theorem: The objective value of the trading strategy n∗ when the impact matrices do not
lie in Uρ is less than the robust optimal value with probability at least Pr

(
λmin(W̃ ) ≥ ρ

)
.

Conclusion and Future Work

In this work, we propose a regularized robust scheme that provides stable solutions w.r.t.
perturbations in the uncertainty set. The approach allows controlling the diversification
and conservativeness of the solution. It ensures deterministic and probabilistic guaran-
tees on the objective value as data change. The probabilistic guarantee is independent of
the obtained solution. For future work, it remains to investigate the impact of the regular-
ization parameter on the total amount selling short, when it is allowed.
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