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ABSTRACT

This paper studies the optimal control of energy storage when operations are permitted only

at random times. At the arrival of a permission, the storage operator has the option, but not the

obligation, to transact. A nonlinear pricing structure incentivizes small transactions spread out

among arrivals, instead of a single unscheduled massive transaction, which could stress the energy

delivery system. The problem of optimizing storage operations to maximize the expected cumulated

revenue over a finite horizon is modeled as a piecewise deterministic Markov decision process. Various

properties of the value function and the optimal storage operation policy are established, first when

permission times follow a Poisson process, and then for permissions arriving as a self-exciting point

process. The sensitivity of the value function and optimal policy to the permission arrival process

parameters is studied as well. A numerical scheme to compute the optimal policy is developed and

employed to illustrate the theoretical results.

Current distribution systems cannot support simultaneous and identical actions of a large number

of agents reacting all to an identical signal. That motivates transactive market frameworks when their

access to transactions is restricted. Therefore, the optimal policy of an agent under this restriction

is important to be studied. Being able to act at random arrival of permissions and under a nonlinear

pricing structure are salient characteristics differentiating this study from existing work on energy

storage optimization.

Keywords: Transactive energy, Energy storage, Dynamic optimization, Optimal control

1. Introduction

This paper is concerned with the optimal control of energy storage, given a finite horizon over

which permissions for operation arrive at random times. The permission flow is modeled by an
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1



Moazeni and Defourny: Optimal Control of Energy Storage under Random Operation Permissions
2

arrival process. The goal is to maximize the cumulative expected profit from operations given the

fixed horizon. The revenue from discharge operations is described by a time-varying function which

is increasing and concave in the quantity. Such a nonlinear pricing structure has the property of

encouraging discharges in smaller amounts.

Two key properties of this energy storage problem are the lack of control over the operation

times and the nonlinear pricing scheme for the discharge payoffs. Being permitted to act only

at random times is a salient characteristic differentiating this problem from existing studies on

optimal energy storage management in which the controller can act at pre-specified times or act

continuously. Nonlinear pricing is pervasive in electricity markets, for instance when side payments

are used to compensate specific generating units for starting up or for staying idle. However, these

schemes often lack transparency, and are not applied uniformly over all participants. In contrast,

in the present work, the nonlinear pricing scheme is defined upfront.

This problem is motivated by market frameworks where the access of energy resources to trans-

actions is restricted and managed in real time by a distribution system operator. Recently, there

has been growing interest in so-called transactive energy markets aimed at facilitating transactions,

including unscheduled transactions. Transactive energy markets can enable bilateral transactions

without passing through the wholesale markets (Rahimi and Ipakchi 2012, Olken 2016, Rahimi

and Ipakchi 2016, Kristov et al. 2016, Cazalet et al. 2016). Transactive energy markets would

allow distributed energy resources without direct access to wholesale markets to participate in

energy transactions over the distribution grid. Energy storage’s unique capabilities (Denholm et al.

2010, DOE Report 2011, Diaz-Gonzalez et al. 2012, Du and Lu 2014), combined with technological

advances that have been driving costs down (Straubel 2015, Quadrennial Energy Review 2015),

suggests that energy storage is an asset that can play an important enabling role in the development

of transactive energy markets. At the same time, further deployment of energy storage requires

developing appropriate market models to address current market and regulatory barriers (Sioshansi

et al. 2012, Bhatnagar et al. 2013, Xiao et al. 2014), especially when it comes to encouraging small

participants at the level of the distribution network.

However, the power injections from storage resources cannot be completely unsupervised and

ad hoc. Because, otherwise, as their deployment and participation become widespread, there will

be times when a large number of storage owners discharge in arbitrary quantities simultaneously.

This will put stress on the distribution system. Restricting distributed energy storage transactions

to only those times that are specified in real time (and not in advance) by a distribution system

operator, supported by an appropriate payoff structure, can alleviate this risk while enabling trans-

actions with no pre-commitments for distributed storage. A simple framework capturing these key

properties is proposed and outlined in subsection 1.1.



Moazeni and Defourny: Optimal Control of Energy Storage under Random Operation Permissions
3

From the perspective of a storage resource operator participating in such a framework, the

permissions for operation communicated by the distribution system operator arrive at random.

Thus, the operator needs to optimally control energy storage under random operation times. The

problem in this paper fits well in this situation. In fact, this analysis is the building block for

further analyzing nonbinding commitment market frameworks.

1.1. Contributions

We formulate the energy storage operation problem as a continuous-time stochastic control prob-

lem, in which the optimal policy depends on the stochastic operation permission flow. The control

problem in this paper belongs to the family of piecewise deterministic Markov decision processes,

a class of optimal control problems introduced by Davis (1984) and studied in Davis (1993). These

processes evolve through random jumps at random points in time while the evolution between

jumps is deterministic. The dynamic programming principle for the control problem of interest

leads to a system of nonlinear partial differential equations, which can be solved numerically, for

instance see Kushner and Dupuis (2001). We demonstrate the effectiveness of the computational

approach using several numerical examples. Next, the extension of the framework to a self-exciting

permission arrival model is discussed to show how the previous analysis based on a constant arrival

rate can be generalized to this more challenging context.

Several properties of the value function and the optimal policy of this problem are established,

relating to the sensitivity of the value function to its state variables and to parameters of the

problem. This analysis is expected to shed light on ways to influence the optimal behavior of the

controller.

Summary: To summarize, our main contributions include developing a novel nonbinding com-

mitment market framework with a number of attractive characteristics, and studying the optimal

control of a storage device participating in this framework. The analyses in this paper can guide

a potential storage owner to value its participation in this nonbinding commitment market frame-

work. In addition, this study provides insights for the policy makers and regulators to design

efficient and attractive storage deployment programs.

1.2. Literature Review

Energy Storage Optimal Control: Managing grid-level storage or controlling hybrid renewable-

energy storage systems have been the topic of several previous studies, see e.g., Thompson et al.

(2009), Lai et al. (2010), Lohndorf et al. (2013), Sioshansi et al. (2014), Zhou et al. (2013), Moazeni

et al. (2015), Moazeni et al. (2017), Harsha and Dahleh (2015), Halman et al. (2015) and the refer-

ences therein. These studies differ in their settings, modeling approach, and objectives. Operations

optimization of storage facilities that participate in the wholesale electricity market by placing bids
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and commitments with the objective of profiting from price differences are studied in Carmona

and Ludkovski (2010), Byrne and Verbic (2013), Xi et al. (2015).

In most existing analyses of energy storage operations in the literature (including those cited

above), electricity flows in and out of the storage resources during time periods that are well

specified in advance. These models have focused on a discrete time model with fixed time epochs

or a continuous time operation environment over a finite or infinite horizon. The present work

differs by introducing uncertainty in the permitted discharge times. In these models, letting an

energy storage device operate at specified times imposes a pre-commitment for the grid or the

entity, interacting with them, to buying electricity at those specific times, for example every hour

in discrete time models or anytime in continuous time models. To the best of our knowledge, the

analysis of an energy storage discharge environment restricted to exogenous random operation

permission times is novel.

Piecewise Deterministic Markov Processes: For studies on similar controlled piecewise

deterministic Markov processes, see Yushkevich (1980), Hordijk and Schouten (1985), Almudevar

(2001), Guo and Hernandez-Lerma (2009), Bauerle and Rieder (2010). For applications of these

models in finance and portfolio optimization, see e.g., Jacobsen (2006), Matsumoto (2006), Pham

and Tankov (2008), Bauerle and Rieder (2009), Bayraktar and Ludkovski (2011), Gassiat et al.

(2011), Fujimoto et al. (2013). For applications in insurance, see e.g., Schmidli (2008) and Kirch

and Runggaldier (2005). For applications in queueing theory, see e.g., Kitaev and Rykov (1995)

and Rieder and Winter (2009).

Price Spike Modeling by Poisson Processes: Capturing electricity price spikes as jumps

modeled via Poisson processes has been frequently considered in the literature on electricity price

models, see e.g., Deng (1999), Cartea and Figueroa (2005), Culot et al. (2006), Geman and Ron-

coroni (2006), Kluge (2006), and Weron et al. (2004). For a comprehensive survey on the electricity

price models see Carmona and Coulon (2013).

1.3. Outline

This paper is organized as follows. The mathematical formulation of the optimal energy storage

discharge control problem is described in Section 3. The structure of the value function is analyzed

in Section 4. In Section 5, the procedure to compute an optimal control is discussed. Section 6

summarizes structural properties of the optimal policy. Illustrative examples and computational

analyses are presented in Section 7. The framework with uncertain arrival rates is explained in

Section 8. Storage models with inefficiencies are briefly addressed in Section 9. Insights and other

possible extensions conclude the paper in Section 10.

Throughout this paper, “increasing” and “decreasing” mean “nondecreasing” and “nonincreas-

ing”, respectively. We denote the set of natural numbers including zero by N and the set of

nonnegative real numbers by R+.
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2. Nonbinding Commitment Market Framework

In this section, we describe the salient characteristics of our setting. The key property of this

framework is to restrict the times at which a particular participating storage unit can discharge.

Agents

Transactions are defined between a utility company or a load serving entity, and a flexible energy

resource owner (e.g., a battery in an electrical vehicle) who is unable to participate in the wholesale

market, perhaps due to its commitment requirements.

Agreement

Participants enroll in a program managed by the utility company to inform the utility company of

their willingness to receive transaction permission notice from the utility company.

The agreement specifies:

• A fixed time horizon over which operation permissions will be sent at random.

• The time-varying payoff structure as a function of the quantity discharged.

The utility company will issue operation permissions to a subset of enrolled available energy stor-

age units, at its own discretion. The utility company has an internal policy for triggering discharge

requests, and distributing them among program participants. For instance, load conditions, distri-

bution network congestions, variability in supply will affect these decisions. However, the utility

company ignores the response rate for the requests it sends. Actually, the response rate follows

from the optimal policy of the storage controller. Therefore, as a first logical step to study the

response rate and develop the permission sending policy, this paper analyzes the optimal behavior

of the storage operator.

As an energy storage unit receives a permission, it has the option, but not the obligation, to

discharge in real time and receive a payment, following the payoff structure agreed upon.

Benefit for the Storage Operator

In contrast to participation in the wholesale market, the storage owner does not have to commit

in advance to providing energy, and does not need to get involved in a bidding process. This

provides the energy storage unit opportunities to participate and benefit from energy transactions

without the financial risk of a binding commitment for energy injection. Thus, it is a nonbinding

commitment for the storage operator.

Benefit for the Utility

The utility company gets access to installed storage capacity without having to invest itself in

those assets. Although the access to individual units is intermittent, overall in aggregate capacity

is obtained at a certain confidence level. Once again this relates back to the optimal behavior of

the program enrollees, which is the main focus of this paper.
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The utility company does not commit in advance to buy from the enrolled energy storage units.

Thus, it is a nonbinding commitment for the utility company.

Through operation permission times, the utility company can indirectly supervise these partici-

pants and avoid their ad hoc inferences in the distribution grid.

Broader Benefits

This framework offers a mutually beneficial agreement: it involves nonbinding commitments with

attractive flexibility and financial benefits for both parties.

It promotes further deployment of distributed storage capacities at the level of the distribution

grid. The presence of energy storage units across the distribution grid can help smoothing out

variability, thereby firming transactions from other agents such as buyers and sellers of wind and

solar energy.

Specific details and further valuation of this market needs to be studied. However, any further

analyses about this framework requires understanding the optimal behavior of storage units par-

ticipating in the program. Therefore, as the first step, in this paper, we focus on this building block

of the framework, namely the optimal control of an energy storage participating in this market.

3. The Model

Consider an energy storage unit of capacity K > 0, participating in a flexible discharge program,

which enables it to discharge its stored power at permitted times over [0, T ], where T denotes the

fixed terminal time horizon.

3.1. Permission Process

We postulate that the discharge permissions are issued randomly by the Poisson process {Ns}s≥0

with arrival rate λ. We assume that λ is fixed (this assumption is relaxed in Section 8). We denote

by {Ft}t≥0 the natural filtration associated with the Poisson process, where Ft is the sigma-algebra

generated by {Ns}s≤t. We refer to the time-stamp of the ith discharge permission that arrives on

the interval [t,∞) by τi,t. This implies that τi,t ≥ t. Thus, {τi,t}i∈N is the sequence of jump times

of the Poisson process {Ns}s≥0 since time t. For convenience we set τ0,t = t.

The total number of permissions received between the current time and the fixed terminal time

is random. Because there is no guarantee of receiving future opportunities to act, the storage

operator faces the problem of deciding between using current versus uncertain future discharge

opportunities.

3.2. Nonlinear Pricing Scheme

When discharge permission is communicated at some time t∈ [0, T ), the storage owner will receive

Rt(a) dollars by discharging a units of electricity at this time. At terminal time T , the value of the

leftover stored electricity is given by the terminal reward function RT (a).
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In this paper, we assume that the reward function Rt(a) is nonnegative and null at a = 0,

increasing in a, concave in a, and continuous in t everywhere. The nonnegativity and concavity

assumptions imply that Rt is subadditive, that is, Rt(a1 + a2) ≤ Rt(a1) + Rt(a2). We define a

terminal reward function RT (k) where k is the stored quantity remaining at time T . We assume

RT is nonnegative, null at k= 0, increasing in k and concave in k.

The subadditivity of Rt incentivizes participating storage units to split their stored energy into

smaller amounts and not to discharge the entire stored amount at once. This is an attractive

property of the program regarding the usage of the distribution network. However, by discharging

the stored energy in small amounts, the storage operator bears the risk of receiving no more

discharge permissions by the terminal time, in which case a leftover charged level remains at time

T that is valued according to the terminal reward RT .

An example of the reward function is Rt(a) = R(pt, a) for some stationary function R and

time-varying reward coefficients pt, which may represent the expected nodal electricity prices.

Alternatively, the reward function can be time-independent, i.e., Rt(a) =R(p, a), where p can be

interpreted as the average electricity price per day.

In our numerical work reported in §7, we use the log-utility function Rt(a) = log(1 + pta) as the

reward function for t∈ [0, T ) and the constant function RT (a) = 0 for the terminal time.

The selected log-utility function is motivated by the following property.

Proposition 3.1 The cumulated payment for a total amount of k, divided equally into n transac-

tions, cannot be greater than the equivalent linear payment pk.

Proof. The function f(n) = n log(1 + pk/n) is increasing in n. The result then follows from

limn→∞ nR(k/n) = limn→∞ n log(1 + pk/n) = pk.

If p is interpreted as a contractual price, the utility company is guaranteed not to spend more

than the contractual price times the total quantity discharged from these resources.

3.3. Optimal Control Problem

When the storage operator is rational and risk-neutral, an optimal discharge policy π to discharge

k ≤K units of power can be determined by maximizing the total expected revenue over the time

horizon [0, T ]. This results in the following optimization problem,

V0(k)
def
= max

xπ∈X0

E

NT−∑
i=1

Rτi,0

(
xπτi−1,0

−xπτi,0
)

+RT (xπT )
∣∣∣ xπ0 = k

 , (1)

where X0 is the set of all nonnegative real-valued, right-continuous with left limits, decreasing

process xπ = {xπt }t∈[0,T ] adapted to the filtration {Ft}t>0. The process xπ represents the charge
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level under the discharge policy π. The filtration condition imply that its values can only change at

the time of jumps of the Poisson process. The random variable NT− is the number of jumps of the

Poisson process {Ns}s≥0 over the time interval [0, T ), and RT (xπT ) captures the terminal reward.

Note that from the assumptions on the reward function, V0(0) = 0.

The aforementioned problem constitutes a piecewise deterministic Markov decision process

(Davis 1993). In parallel with the formulation in (1) in terms of the controlled charge level xπ, one

may also describe the control strategy Aπ for the discharge amount over (0, T ). The corresponding

controlled charge process xπt at time t when the discharge strategy Aπ is being employed satisfies

xπ0 = k,

dxπt =−Aπt (xπt−)dNt, ∀t∈ (0, T ), (2)

xπT = xπT− ,

where {xπ
t−}t∈[0,T ] is the left limit process. We denote the class of policies π where xπ ∈X0 by Π.

For a fixed T <∞, the expected performance of a policy π from time t onwards, starting from

a charge level k at time t, is written

V π
t (k)

def
= E

NT−−Nt−∑
i=1

Rτi,t

(
xπτi−1,t

−xπτi,t
)

+RT (xπT )
∣∣∣ xπt = k

 . (3)

Here, NT−−Nt− equals the number of jumps of the Poisson process {Ns}s≥0 over the time interval

[t, T ). The expected performance from time t onwards with an optimal strategy is written

Vt(k)
def
= max

π∈Πt
V π
t (k), (t, k)∈ [0, T )× [0,K], (4)

and VT (k) =RT (k) for all k in [0,K]. Here, Πt is the set of all truncated policies defined over [t, T ].

Note that Vt(0) = 0 for all t∈ [0, T ], and VT (k) =RT (k) for all k ∈ [0,K].

Let Ak ⊆R+ be the set of all discharge amounts that the storage unit can discharge, when the

charge level is k. The function Vt(k) in (4) satisfies the following dynamic programming equation:

Vt(k) = E
[
max
a∈Ak

{
Rτ1,t(a) +Vτ1,t(k− a)

}
· 1τ1,t<T +RT (k) · 1τ1,t≥T

]
, (5)

where the expectation is over the time τ1,t of the next permission. With a slight abuse of language,

we call this function the value function. It represents the expectation of the cumulated reward-to-go

at the upcoming decision stage.

Examples of the set of admissible discharges include Ak = [0, k], or Ak = {0} ∪ [c,min(k, c̄)] for

some constants c≥ 0 and c̄≤K. In this paper, we assume that the admissible Ak is nonempty for

each k ∈ [0,K] and argmaxa∈Ak
{
Rτ1,t(a) +Vτ1,t(k− a)

}
6= ∅.
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Let at(k) denote the optimal discharge amount at time t, when a discharge permission arrives

(t= τi,0 for some i) and the charge level is k. It follows from (5) that the optimal discharge amount

is given by

at(k)∈ arg max
a∈Ak

{Rt(a) +Vt(k− a)} . (6)

To avoid ambiguity, we assume that if the maximizer in (6) is not unique, then at(k) is the smallest

maximizer. We set at(0) = 0, for all t≤ T .

When the value functions Vt(k) are determined, the surface {at(k)}k∈[0,K],t∈[0,T ], computed from

(6), is used in conjunction with (2) to react to the arrivals of discharge permissions in an optimal

way. Thus, it is enough to fully specify the value function Vt(k) for each 0≤ k≤K and 0≤ t≤ T .

In the subsequent section, we analyze several properties of the value functions which we later use

to characterize the optimal discharges.

4. Structure of the Value Function

A simple observation is that the value function Vt(k) is nonincreasing over t, and nondecreasing

over k. This is formalized in the following proposition and proved in Appendix A.

Proposition 4.1 It holds that

(a) For any charge level k, Vt(k) is decreasing in t.

(b) For any time t∈ [0, T ], Vt(k) is increasing in k.

Next, we show that the value function is monotone in the discharge permission rate λ.

Proposition 4.2 For any time t∈ [0, T ] and charge level k, the value function Vt(k) is increasing

in the arrival rate λ.

Proof. Let λ1 and λ2 be arrival rates with λ1 <λ2. Let V 1
t and V 2

t be the corresponding value

functions, i.e., V 1
t measures cumulated rewards in expectation over a Poisson input process {N 1

s }s≥t
of arrival rate λ1, while V 2

t measures the expected cumulated rewards over a Poisson input process

{N 2
s }s≥t of rate λ2.

Define p
def
= λ1

λ2
. Now, let {Zi}i≥1 be an i.i.d. sequence of binary random variables, independent

of the Poisson processes, such that Pr(Zi = 1) = p and Pr(Zi = 0) = 1− p.

Let the process {Zi}i≥1 label each arrival from the input process N 2
s . Recall that the process

that counts the points labeled with ones up to time s is a Poisson process with the rate pλ2. By

our choice of p, pλ2 = λ1. This means N 2
s compounded with Zi defines an input process distributed

as N 1
s .
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Let π1 be an optimal discharge policy that attains V 1
t under the Poisson process {N 1

s }s≥t. Define

a discharge policy π2 adapted to N 2
t and Zi as follows,

dxπ2
t

def
= −ZiAπ1

t

(
xπ1

t−

)
dN 2

t , ∀t∈ (0, T ),

where xπ2
0 = k and xπ2

T = xπ2

T− . Here, Zi plays the role of a coin-flipping process which, at each new

arrival i from N 2
s , occurring at time τi,t, permits to discharge the amount Aπ1

τi
(xπ1

τ−i,t
) with probability

p, or prevents it with probability 1− p.
It follows that under the Poisson process N 2

t , π2 attains the value V 1
t (k) for each k. Therefore

we can conclude

V 2
t (k) = max

π∈Πt
E

N2
T−−N

2
t−∑

i=1

Rτi,t(x
π
τi,t
−xπτi−1,t

) +RT (xπT )


≥E

N2
T−−N

2
t−∑

i=1

Rτi,t(x
π2
τi,t
−xπ2

τi−1,t
) +RT (xπ2

T )


=E

N1
T−−N

1
t−∑

i=1

Rτi,t(x
π1
τi,t
−xπ1

τi−1,t
) +RT (xπ1

T )

= V 1
t (k),

where the first expectation is over N 2
t , the second expectation is over N 2

t and Zi, and the third

expectation is over N 1
t . This completes the proof of V 1

t (k)≤ V 2
t (k). �

Monotonicity of the value function in the charge level addressed in Proposition 4.1 implies that

Vt(k)≥ Vt(0) = 0 for any k≥ 0. The following proposition indicates that the value function is also

bounded above when the reward function is bounded.

Proposition 4.3 Let cr := maxt∈[0,T ]Rt(K). Then, Vt(k)≤ (1 +λT ) cr, for all t∈ [0, T ].

Proof. Let Π+
t be the extension of Πt to the set of policies defined over [t, T ] that are FT

measurable. This means that the controlled process can now peek into the future until time T .

Then we have

Vt(k) = max
π∈Πt

E

NT−−Nt−∑
i=1

Rτi,t

(
xπτi−1,t

−xπτi,t
)

+RT (xπT )
∣∣∣ xπt = k


≤E

max
π∈Π+

t

N
T−−Nt−∑
i=1

Rτi,t

(
xπτi−1,t

−xπτi,t
)

+RT (xπT )
∣∣∣ xπt = k

 .
Since the reward function is bounded by cr, we have Rτi,t

(
xπτi−1,t

−xπτi,t
)
≤ cr almost surely (a.s.),

for all i= 1, · · · ,NT− −Nt− and Rτi,t(xT )≤ cr a.s. Therefore, we have

Vt(k) ≤E

[
max
π∈Π+

t

cr (NT− −Nt− + 1)
∣∣∣ xt = k

]
= cr (λ(T − t) + 1)≤ cr (λT + 1) .

This completes the proof. �
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Next, we establish the concavity of the value function given that the reward functions Rt are

concave in the charge level. The proof of Proposition 4.4 is given in Appendix A.

Proposition 4.4 For any time t∈ [0, T ], the value function Vt(k) is concave in k.

The concavity of the value function Vt(k) in the charge level k implies the continuity of Vt(k)

in k on [0,K], e.g., see Corollary 2.37 in Rockafellar and Wets (1998). In fact since [0,K] is a

nonempty closed and bounded subset of R, Vt(k) is uniformly continuous in k. The following

proposition addresses the continuity of the value function in t. We provide a proof of Proposition

4.5 in Appendix A.

Proposition 4.5 For any charge level k, Vt(k) is uniformly continuous in t.

In the following section, we derive the system of partial differential equations that will be satisfied

by the value function Vt(k). This equation is the building block of our computational scheme to

derive an optimal policy.

5. Computational Scheme

For any reward function Rt(·), the value function Vt(k) can be computed using Euler’s method

(e.g., see Judd (1998), Kushner and Dupuis (2001)) with the difference equation

Vt+δ(k) = Vt(k) + δ
∂Vt(k)

∂t
. (7)

The dynamic programming equation (5) for our control problem leads to the computation of ∂Vt(k)

∂t
.

Proposition 5.1 The derivative of the value function with respect to time equals

∂Vt(k)

∂t
= λ

(
Vt(k)−max

a∈Ak
(Rt(a) +Vt(k− a))

)
, (8)

where λ is the constant intensity of the discharge permissions arrival process.

Proof. Consider the time interval (t− δ, t], where δ > 0 is a small real. Denote A
def
= {τ1,t−δ > t},

B
def
= {τ1,t−δ ≤ t, τ2,t−δ > t}, and C

def
= (A ∪B)c. By the dynamic programming principle the value

function Vt satisfies

Vt−δ(k) =E [Vt(k) · 1A +XB · 1B +XC · 1C ] ,

where XB
def
= Rτ1,t−δ(aτ1,t−δ(k)) + Vt(k − aτ1,t−δ(k)) and where XC is a bounded random variable

due to the fact that the rewards are bounded. Here, aτ1,t−δ(k) is defined as in (6) at time τ1,t−δ.

The events A, B, C are Ft-measurable.
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The definitions of the events yield Pr(A) = e−λδ, Pr(B) = λδe−λδ, and Pr(C) = o(δ). Hence,

Vt−δ(k) = Vt(k)Pr(A) +E [XB|B]Pr(B) +E[XC |C]Pr(C)

= Vt(k)e−λδ +E [XB|B]λδe−λδ +E[XC |C]o(δ).

Using this equality, we have

∂Vt(k)

∂t
= lim
δ→0

Vt(k)−Vt−δ(k)

δ

= lim
δ→0

(1− e−λδ)Vt(k)−E [XB|B]λδe−λδ −E[XC |C]o(δ)

δ

= λVt(k)−λ lim
δ→0

E [XB|B] . (9)

Using Proposition 4.3, for every instance τ1,t−δ(ω)∈ [t− δ, t] we have

|XB(ω)|=
∣∣Rτ1,t−δ(ω)(aτ1,t−δ(ω)(k)) +Vt(k− aτ1,t−δ(ω)(k))

∣∣≤ cr + (1 +λT )cr.

The bounded convergence theorem for expectations (e.g., see Çınlar (2011)) implies that the limit

and the expectation in equation (9) can be interchanged. Therefore

lim
δ→0

E [XB | B] = lim
δ→0

E [Rν(aν +Vt(k− aν(k))] =E
[
lim
δ→0
{Rν(aν +Vt(k− aν(k))}

]
(10)

where ν has the distribution of τ1,t−δ given B.

For any instance ν(ω)∈ [t− δ, t] where ω refers to an element of the sample space, we have

lim
δ→0

{
Rν(ω)(aν(ω)(k)) +Vt(k− aν(ω)(k))

}
= lim

δ→0

{
Rν(ω)

(
aν(ω)(k)

)
+Vν(ω)

(
k− aν(ω)(k)

)
−Vν(ω)

(
k− aν(ω)(k)

)
+Vt

(
k− aν(ω)(k)

)}
= lim

δ→0

{
Rν(ω)

(
aν(ω)(k)

)
+Vν(ω)

(
k− aν(ω)(k)

)}
− lim
δ→0

{
Vν(ω)

(
k− aν(ω)(k)

)
−Vt

(
k− aν(ω)(k)

)}
= lim

δ→0

{
max
a∈Ak

(
Rν(ω)(a) +Vν(ω)(k− a)

)}
− lim
δ→0

{
Vν(ω)

(
k− aν(ω)(k)

)
−Vt

(
k− aν(ω)(k)

)}
. (11)

According to Proposition 4.5, the value function Vt(k) is uniformly continuous in t on Ak ∩ [0,K].

In addition, as δ → 0, ν → t almost surely. Therefore, for any a ∈ Ak ∩ [0,K] and the instance

ν(ω)∈ [t− δ, t] we have

lim
δ→0

Vν(ω) (k− a) = lim
ν(ω)→t

Vν(ω) (k− a) = Vt (k− a) .

In particular, for a= aν(ω)(k), this equation yields

lim
δ→0

{
Vν(ω)

(
k− aν(ω)(k)

)
−Vt

(
k− aν(ω)(k)

)}
= 0. (12)

At the same time, since the objective function is uniformly continuous in t, Rν(ω)(a)+Vν(ω)(k−a)

epi-converges to Rt(a) + Vt(k − a) as δ → 0 by Theorem 7.15 of Rockafellar and Wets (1998).

Therefore, Theorem 7.33 of Rockafellar and Wets (1998) implies that

lim
δ→0

{
max
a∈Ak

(
Rν(ω)(a) +Vν(ω)(k− a)

)}
= max

a∈Ak
(Rt(a) +Vt(k− a)) . (13)
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We note that equality (13) could also be derived by Theorem 2.1 of Fiacco (1974) using the uniform

continuity of Vt(k) in t and the continuity of the value function and the reward function in k.

Using equations (12) and (13) in equation (11) and subsequently in equation (10) follows that

lim
δ→0

E [XB | B] =E
[
lim
δ→0

{
Rν(ω)(aν(ω)(k)) +Vt(k− aν(ω)(k))

}]
= max

a∈Ak
(Rt(a) +Vt(k− a)) .

This equation along with (9) completes the proof. �

Using Proposition 5.1 and Euler’s method, for small δ > 0 we obtain the difference equation

Vt−δ(k) = Vt(k)− δ ∂Vt(k)

∂t

= Vt(k)− δ λ
(
Vt(k)−max

a∈Ak
(Rt(a) +Vt(k− a))

)
,

that is,

Vt−δ(k) = (1−λδ)Vt(k) +λδmax
a∈Ak

(Rt(a) +Vt(k− a)) . (14)

This difference equation along with the boundary conditions Vt(0) = 0 and VT (k) =RT (k) specifies

the value function Vt(k) for all 0 ≤ k ≤K and 0 ≤ t ≤ T . The optimal discharge amounts at(k)

are then determined from (6) along with the boundary conditions at(0) = 0, for all 0≤ t≤ T , and

aT (k) = k, for all 0 ≤ k ≤ K. Note that since both the reward functions Rt and optimal value

functions Vt are concave and the set of admissible discharges Ak is convex, (14) involves solving

convex optimization problems.

Below, we prove that the partial derivative is monotone in the charge level.

Corollary 5.1 Suppose that the feasible action sets Ak as functions of the charge level k are such

that k1 ≤ k2 yields Ak1
⊆Ak2

. Then, ∂Vt(k)

∂t
is decreasing in k.

Proof. Let k1 and k2 be two charge levels where k1 ≤ k2. Therefore, the monotonicity of feasible

action sets implies that at(k1)∈Ak1
⊆Ak2

. This along with equation (8) imply that for λ> 0,

∂Vt(k2)

∂t
= λ

(
Vt(k2)− max

a∈Ak2

(Rt(a) +Vt(k2− a))

)
≤ λ (Vt(k2)−{Rt (at(k1)) +Vt (k2− at(k1))}) . (15)

In addition, the concavity of the value function Vt in the charge level established in Proposition 4.4

implies that it has decreasing differences. Hence, Vt(k2)−Vt(k1)≤ Vt(k2−at(k1))−Vt(k1−at(k1)),

and consequently

Vt(k2)−Vt (k2− at(k1))≤ Vt(k1)−Vt (k1− at(k1)) . (16)
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It then follows from inequality (16) in (15) that

∂Vt(k2)

∂t
≤ λ (Vt(k2)−Rt(at(k1))−Vt(k2− at(k1))) (17)

≤ λ (Vt(k1)−Rt(at(k1))−Vt(k1− at(k1)))

= λ

(
Vt(k1)− max

a∈Ak1

(Rt(a) +Vt(k1− a))

)
=
∂Vt(k1)

∂t
,

which shows the result. �

6. Structure of the Optimal Policy

This section is devoted to addressing some properties of at(k), defined in (6), and of the charge

level process xπ. Three fundamental properties are established: (i) the optimal discharged amount

is nondecreasing in the charge level, (ii) the optimal charge trajectory over [0, T ] is nondecreasing in

the initial charge level, and (iii) under mild conditions, the passage of time increases the discharged

amounts. Note that property (ii) implicitly bounds how the discharged amounts increase with an

increase of the initial charge level, and therefore complements property (i).

We start by establishing a monotonicity result for the optimal discharge amount. In the sequel,

the set Ak ⊆R is called ascending in k, if for any k1 ≤ k2 and any two elements (a, b) where a∈Ak1

and b ∈Ak2
, we have min{a, b} ∈ Ak1

and max{a, b} ∈ Ak2
, see e.g., Heyman and Sobel (2003) or

Topkis (1998).

Proposition 6.1 Let the set C def
= {(k,a) ∈R2 : a ∈Ak, k ∈ [0,K]} be a sublattice of R2 and Ak be

ascending in k on [0,K]. Then, for any t∈ [0, T ], at(k) is an increasing function of the charge level

k, i.e., k1 ≤ k2 implies at(k1)≤ at(k2).

Proof. The reward function Rt is a function on R, and consequently it is supermodular in a on

R. In addition, since the value function Vt is concave in the charge level, Lemma 2.6.2 in Topkis

(1998) implies that the function Vt(k− a) is supermodular in (k,a) on R2. Therefore, the positive

linear combination of these two supermodular functions, Rt(a)+Vt(k−a), is supermodular in (k,a)

on R2. Since C is a sublattice of R2, and Ak is the section of C at k, it follows from Theorem 2.8.2

in Topkis (1998) that the optimal solution set arg max
a∈Ak

{Rt(a) +Vt(k− a)} is ascending in k on

{k : arg max
a∈Ak

{Rt(a) +Vt(k− a)} 6= ∅}= [0,K]. Therefore, it follows from Theorem 2.8.3 of Topkis

(1998) that the smallest element of the optimal solution set, at(k), is increasing in k. �

For instance, the set Ak = [0, k] is ascending in k on [0,K] and the set C def
= {(k,a) ∈ R2 : a ∈

Ak, k ∈ [0,K]} is a sublattice of R2. In addition, Ak = [0, k] has the property assumed in Corollary

5.1 that is k1 ≤ k2 implies that Ak1
⊆Ak2

.

The following proposition shows that an optimal policy π started at a higher initial charge level

results in a stored quantity process with higher levels through the entire time horizon.
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Proposition 6.2 Let k1 ≤ k2. Denote the charge level processes corresponding to the optimal policy

started at states k1 and k2 at time t= 0 with x1
t and x2

t , respectively. Then for all t∈ [0, T ], x1
t ≤ x2

t .

Proof. Let t̄ := max{t : x1
s ≤ x2

s for 0 ≤ s ≤ t}. Suppose by contradiction that t̄ < T . Then, t̄

must be the time of a discharge permission arrival, t̄ = τj,0 for some j, such that x2
t̄− ≥ x

1
t̄− and

x2
t̄ <x

1
t̄ .

Let a1 ∈ argmaxa∈[0,x1
t−

]

{
Rt(a) +Vt(x

1
t− − a)

}
. Therefore, x1

t = x1
t− − a

1 and

Rt
(
a1
)

+Vt
(
x1
t− − a

1
)
≥Rt (a) +Vt

(
x1
t− − a

)
∀a∈ [0, x1

t− ].

In particular, for a= (x1
t− −x

2
t )∈ [0, x1

t− ] this inequality implies that

Rt (a
1) +Vt

(
x1
t− − a

1
)
≥ Rt

(
x1
t− −x

2
t

)
+Vt

(
x1
t− −

(
x1
t− −x

2
t

))
= Rt

(
x1
t− −x

2
t

)
+Vt

(
x2
t

)
. (18)

Let a2 be the smallest element of the solution set argmaxa∈[0,x2
t−

]

{
Rt(a) +Vt(x

2
t− − a)

}
. We have

x2
t = x2

t− − a
2 and

Rt
(
a2
)

+Vt
(
x2
t− − a

2
)
≥Rt(a) +Vt

(
x2
t− − a

)
∀a∈ [0, x2

t− ]. (19)

Since a2 is the smallest maximizer, inequality (19) must hold strictly for any a< a2. In particular,

for (x2
t− − x

1
t ) ∈ [0, x2

t− ], it follows from the strict inequality x2
t < x1

t that x2
t− − x

1
t < x2

t− − x
2
t = a2.

Hence,

Rt (a
2) +Vt

(
x2
t− − a

2
)
> Rt

(
x2
t− −x

1
t

)
+Vt

(
x2
t− −

(
x2
t− −x

1
t

))
= Rt

(
x2
t− −x

1
t

)
+Vt

(
x1
t

)
. (20)

By combining inequalities (18) and (20), we arrive at

Rt
(
x1
t− −x

2
t

)
−Rt (a1) ≤ Vt

(
x1
t− − a

1
)
−Vt(x2

t ) (21)

= Vt
(
x1
t

)
−Vt

(
x2
t− − a

2
)

(22)

<Rt
(
a2
)
−Rt

(
x2
t− −x

1
t

)
. (23)

Here inequalities (21) and (23) are rearrangements of inequalities (18) and (20), and the equality

(22) comes from the facts that x1
t = x1

t− − a
1 and x2

t = x2
t− − a

2.

On the other hand, it follows from the concavity of Rt that it has decreasing differences. Thus,

Rt
(
x1
t− −x

2
t

)
−Rt(a1) =Rt

(
a1 + (a2−x2

t− +x1
t )
)
−Rt

(
a1
)

≥Rt
(
x2
t− −x

1
t + (a2−x2

t− +x1
t )
)
−Rt

(
x2
t− −x

1
t

)
=Rt(a

2)−Rt(x2
t− −x

1
t ).

which is in contradiction with inequality (23). Thus the supposition that t̄ < T cannot be true, i.e.,

for all t∈ [0, T ], we must have x1
t ≤ x2

t . �
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The following proposition discusses the monotonicity of at(k) in t. It shows that as time

approaches to the end of horizon, the participating storage unit discharges in larger amounts.

Proposition 6.3 Suppose that ∂Rt(a)

∂t
is increasing in a. In addition, suppose that the set of admis-

sible actions Ak is such that k1 ≤ k2 yields Ak1
⊆ Ak2

. Then for any charge level k, at(k) is

increasing in t, i.e., t1 < t2 yields at1(k)≤ at2(k).

Proof. Fix k and let t2 > t1. For any b < at1(k), b 6∈ argmaxa∈Ak {Rt1(a) +Vt1(k− a)}. Therefore,

Rt1(b) +Vt1(k− b)<Rt1(at1(k)) +Vt1 (k− at1(k)), and consequently

Vt1(k− b)−Vt1 (k− at1(k))<Rt1 (at1(k))−Rt1(b). (24)

On the other hand, the assumption that
∂Rt2 (a)

∂t
is increasing in a implies that

∂Rt2 (b)

∂t
≤ ∂Rt2 (at1 (k))

∂t
.

Thus, we have Rt2(b)−Rt1(b)≤Rt2(at1(k))−Rt1(at1(k)). Therefore,

Rt1(at1(k))−Rt1(b)≤Rt2(at1(k))−Rt2(b).

Combining the recent inequality in inequality (24) results in

Vt1(k− b)−Vt1 (k− at1(k))<Rt2(at1(k))−Rt2(b). (25)

According to Corollary 5.1,
∂Vt2 (k)

∂t
is decreasing in k. In particular, k − b > k − at1(k) implies

that
∂Vt2 (k−b)

∂t
≤ ∂Vt2 (k−at1 (k))

∂t
. Using t2 ≥ t1, we have

Vt2(k− b)−Vt1(k− b)≤ Vt2 (k− at1(k))−Vt1 (k− at1(k)) .

Using this inequality and inequality (25) we get

Vt2(k− b)−Vt2 (k− at1(k)) ≤ Vt1(k− b)−Vt1 (k− at1(k))<Rt2(at1(k))−Rt2(b).

A rearrangement of the recent inequality equals

Rt2(b) +Vt2(k− b)<Rt2(at1(k)) +Vt2 (k− at1(k)) ,

which indicates that at1(k) achieves a superior value for Rt2(a)+Vt2(k−a) than b. Hence, b cannot

be in the solution set argmaxa∈Ak {Rt2(a) +Vt2(k− a)}. Since this is true for any b < at1(k), we

can conclude that at2(k)≥ at1(k). �

Next we present our computational investigation of the optimal value function and optimal

decisions of a storage unit.
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7. Numerical Examples

We consider a storage device of capacity K = 4. The finite time horizon over which a participating

storage unit may be issued a permission is assumed to be [7am-11pm].

We assume that the discharge permission events are triggered when the zonal electricity price

is above a given price threshold. The real time 5-min prices over [7am-11pm] for August 25, 2015

for New York City (load zone J in NYISO) and the price threshold 50[$/MWHr] are illustrated

in Figure 1(a). Given the price threshold, the discharge permission event is triggered 100 times on

August 25, 2015, which is the highest number of realized discharge permission arrivals per day in

August 2015. These discharge permission time slots correspond to the times specified by the solid

red line in Figure 1(a).
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(a) August 25, 2015
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Figure 1 (a) Real time 5-min prices in N.Y.C. zone and the discharge permission times on August 25, 2015.

Discharge permission times are indicated by the solid red line. (b) Time-varying reward coefficients,

approximated by the mean real time prices in August 2015 in the N.Y.C. zone.

7.1. Permission Process

For a given price threshold, we estimate the daily arrival rate using the real time 5-min prices of

peak hours from August 1, 2015 to August 31, 2015. For example, for the threshold price equals

to 50[$/MWHr], the average arrival rate over peak hours is 24.9355 per day. For threshold prices

100[$/MWHr] and 25[$/MWHr], the permission arrival rates become 4.7742 per day and 144.7742

per day, respectively.

7.2. Nonlinear Pricing Scheme

We consider the log reward function Rt(a) = log(1 + pta) as the reward function for t ∈ [0, T ).

The average real time hourly electricity price over one month is used as a proxy of the reward

coefficient pt at every time t ∈[7am-11pm]. The average real time hourly price curve for August

2015 is depicted in Figure 1(b).
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The value of the stored power at the end of the time horizon is assumed to be zero, i.e., RT (a) = 0,

for all a.

7.3. Results

Figure 2 summarizes the results from the computational scheme in §5 with δ = 5 min. Here, the

permission arrival rate is set to λ= 24.9355/16 = 1.5585 per hour and the reward coefficient pt at

every time t is obtained from the curve in Figure 1(b).

The left plot illustrates the value function and the right plot depicts the optimal actions at(k).

The left plot confirms the results in §4 on the concavity of the value function in the charge level k

and its monotonicity in the charge level k and time t. The right plot also illustrates the structures

analyzed in §6 that the discharge amount at(k) is increasing in the charge level k.
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Figure 2 Results for log reward function Rt(a) = log(1+ pta).

7.4. Sensitivity to Permission Arrival Rate

We investigate the structure of the value function and actions for the log reward function, as

the discharge permission arrival rate λ increases. The arrival rate is an important parameter that

can be controlled by the utility. The analysis for the charge level k = 2 and for four values of λ,

namely λ= λ0, λ= 3λ0, λ= 6λ0, and λ= 10λ0, is reported in Figure 3. The left plot depicts the

value function Vt(2), which increases with the arrival rate λ. This observation is consistent with

Proposition 4.2.

Figure 3(b) shows the optimal discharge amounts at(2) for the four values of discharge permission

rates. As the curve corresponding to λ= λ0 indicates, at(2) is nonzero even at times closer to the

beginning of the time horizon. When the expectation for having more discharge permissions is low,
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which corresponds to a smaller rate λ, the storage owner uses any given opportunity to discharge

even if the time does not correspond to the best reward value. As the discharge permission rate

increases, the optimal action is to discharge more patiently and in larger amounts when the end of

time horizon is approached.
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Figure 3 Sensitivity of the optimal value function and optimal actions to λ for k= 2. Here, λ0 = 1.5585.

8. Extension to Uncertain Arrival Rates

This section extends our analysis to the case where the Poisson arrival process is replaced by a

more general point process, motivated by the need for studying the robustness of our model to the

Poisson arrival process assumption. Namely, we now assume that the permissions are generated

as a Markovian self-exciting point process. The generalization of the arrival model to self-exciting

point processes (see e.g., Bremaud (1981), Daley and Vere-Jones (2003)) can be well-suited to

the modeling of permissions arriving in clusters (Hawkes and Oakes 1974). This may happen, for

example when discharge permissions are driven by high demand levels or network perturbations,

in which cases the occurrence of past discharge permission arrivals may increase the probability of

occurrence of future permission arrivals. This intensity model may address the fact that balancing

needs would trigger permissions from the utility company.

Here, we investigate self-exciting shot processes. Following Chapter 6 of Çınlar (2011), let M be

a standard Poisson random measure on R+×R+. The counting process {Nt}0≤t≤T and arrival rate

{λt}0≤t≤T are defined by

λt = λ0e
−βt +

∫ t

0

αe−β(t−s)dNs

Nt =

∫
[0,t]×R+

M(ds, dz)10<z≤λs ,
(26)

where α ≥ 0 is the jump magnitude, β ≥ 0 is the decay rate, and the indicator function 10<z≤λs

is equal to 1 if z ∈ (0, λs] and to 0 otherwise. The process λt in (26) is Markov (see Section 6.27
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of Çınlar (2011) for a proof). For algorithms employed in simulation studies of such self-exciting

processes, see (Lewis and Shedler 1979, Ogata 1981, Sigman 2013). Figure 4 illustrates two sample

realizations of this process for λ0 = 1, β = 0.8, and α= 1. The continuous lines represent the rate

λt, and the dots represent the arrival times. Arrivals trigger a positive jump in the rate, while

the absence of arrivals results in the exponential decay of the rate. These characteristics of the

stochastic rate favor the emergence of arrivals in clusters, recognizable in Figure 4.
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Figure 4 Two realizations of the self-exciting shot process (curves: arrival rate; dots: arrival times).

Given the intensity model (26), the state space at time t in the control problem of maximizing

the total expected revenue is augmented to include λt. Equation (5) is thus extended to

Vt(k,λt) = E
[
max
a∈Ak

{
Rτ1,t(a) +Vτ1,t(k− a,λτ1,t)

}
·1τ1,t<T +RT (k) ·1τ1,t≥T

]
, (27)

where the expectation is now also over the future stochastic rates, given the current rate λt. The

maximization is now over the time-varying Markov discharge policies {Aπt (k,λ)}0≤t≤T where k is

the charge level and λt is the permission arrival rate at time t. An optimal discharge action at the

permission time is obtained by at(k,λt) = argmaxa∈Ak {Rt(a) +Vt(k− a,λt)}.

Consider the time interval (t− δ, t] for a small real δ > 0. The probability of no arrival equals

Pr(τ1,t−δ > t|λt−δ) = exp

(
−λt−δ

(1− e−βδ)
β

)
. (28)

See, e.g., Hawkes and Oakes (1974). This can be directly established, by the decomposition of the

interval into n equal subintervals of length ∆ = δ
n

, and evaluating

Pr (τ1,t−δ > t|λt−δ) = Pr (∩nk=1 {τ1,t−δ > t− δ+ k∆} |λt−δ)

=

n∏
k=1

Pr
(
τ1,t−δ > (t− δ) + k∆ | λt−δ+(k−1)∆ = λt−δe

−β(k−1)∆
)

= exp

(
−λt−δ

n∑
k=1

e−β(k−1)∆∆

)
.

As ∆→ 0, this quantity can be approximated by exp
(
−λt−δ

∫ δ
0
e−βsds

)
= exp

(
−λt−δ(1−e−βδ)

β

)
,

resulting in (28).
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Figure 5 Optimal value function and discharge actions under the self-exciting shot process for permission arrivals.

Similarly, Pr(Nt− − N(t−δ)− ≥ 2) = o(δ) and Pr(Nt− − N(t−δ)− = 1) = 1 − Pr(Nt− − N(t−δ)− =

0) + o(δ) hold for small δ. Thus, it follows from the dynamic programming principle that

Vt−δ(k,λt−δ) =

(
e
−λt−δ(1−e−βδ)

β

)
Vt
(
k,λt−δe

−βδ)
+

(
1− e

−λt−δ(1−e−βδ)

β

)(
max
a∈Ak

{
Rt(a) +Vt

(
k− a,λt−δe−βδ +α

)})
. (29)

This equation is employed to compute Vt(k,λt) and corresponding actions at(k,λt) for charge level

k and intensity level λt. Figure 5 illustrates these values. Similar to §7, K = 4 and the log reward

function Rt(a) = log(1 + pta) for pt as in Figure 1(b) are considered.

Proposition 4.1 remains valid for the intensity model (26); its proof in Appendix A is directly

applicable. Given cr as in Proposition 4.3, cr := max
t∈[0,T ]

Rt(K), and following the proof of this propo-

sition, we arrive at Vt(k) ≤ cr (E[NT− −Nt− | λt = λ] + 1). Equations (6.15) and (6.35) in Çınlar

(2011) yield E[Nt] = λ0
(α−β)

(e(α−β)t−1). Therefore, the following upper bound on the value function

associated to the arrival rate model (26) can be established,

Vt(k,λt)≤
(

1 +
λt

(α−β)

(
e(α−β)(T−t)− 1

))
cr. (30)

The following proposition extends the result in Proposition 4.2 and state sensitivity of the value

function to the shot noise process parameters.

Proposition 8.1 Suppose (λt,Nt) follows the shot noise process in (26). Consider the expected

value function Vt(k,λt) defined by (27). Then (i) λ1 ≤ λ2 implies Vt(k,λ1) ≤ Vt(k,λ2), for all k.

Furthermore, let the notation V
(`)
t indicate that the arrival process follows (26) with parameters

α`, β`, for `= 1,2. Then (ii) β1 ≥ β2 and α1 ≤ α2 imply that V
(1)
t (k,λ)≤ V (2)

t (k,λ), for all k, λ.
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Proof. Let Mω denote a fixed realization ω of a standard 2-dimensional random Poisson mea-

sure, with corresponding atoms (ti(ω), zi(ω)), i≥ 0, indexed such that ti < ti+1. To prove (i) and

(ii) simultaneously, consider for j = 1,2 the processes {(λ(j)
s ,N (j)

s −N
(j)
t )}t≤s≤T follow (26) with

β = βj, α = αj, started on λ
(j)
t = λj almost surely, where λ1 ≤ λ2, β1 ≥ β2, and α1 ≤ α2. Given

ω, we derive the corresponding realizations (λ(j)
s (ω), [N (j)

s −N
(j)
t ](ω))t≤s≤T from Mω and (26). We

have λ
(1)
t (ω) = λ1 ≤ λ2 = λ

(2)
t (ω). Suppose λ(1)

s (ω)≤ λ(2)
s (ω) and [N (1)

s −N
(1)
t ](ω)≤ [N (2)

s −N
(2)
t ](ω)

for s ∈ S, which is true for S = {t}. Then for all times s′ ∈ (ti(ω), ti+1(ω)) ∩ [s,T ] where i =

sup{i≥ 0 : ti(ω)≤ s}, we have λ
(1)

s′ (ω)≤ λ(2)

s′ (ω), from the relations λ
(j)

s′ (ω) = λ(j)
s (ω)e−βj(s

′−s) with

β1 ≥ β2 and λ(1)
s ≤ λ(2)

s , as well as N
(1)

s′ − N (1)
s = N

(2)

s′ − N (2)
s = 0 since there is no arrival. At

the tentative jump time ti, the inequality λ
(1)

t−i (ω)
(ω)≤ λ(2)

t−i (ω)
(ω) implies λ

(1)

ti(ω)(ω)≤ λ(2)

ti(ω)(ω), since

λ
(1)

ti(ω)(ω) = λ
(1)

t−i (ω)
(ω) + α11(0,λ

(1)

t−
i

(ω)
]
(zi(ω))≤ λ(2)

t−i (ω)
(ω) + α21(0,λ

(2)

t−
i

(ω)
]
(zi(ω)) = λ

(2)

ti(ω)(ω), using α1 ≤

α2. We also have [N
(1)

ti(ω) −N
(1)

t−i (ω)
](ω) = 1

(0,λ
(1)

t−
i

(ω)
]
(zi(ω)) ≤ 1

(0,λ
(2)

t−
i

(ω)
]
(zi(ω)) = [N

(2)

ti(ω) −N
(2)

t−i (ω)
](ω)

and thus [N
(1)

ti(ω) −N
(1)
t ](ω) ≤ [N

(2)

ti(ω) −N
(2)
t ](ω). Hence, the set S can be extended to [t, T ], that

is, λ(1)
s (ω)≤ λ(2)

s (ω) for all s ∈ [t, T ], and [N (1)
s −N

(1)
t ](ω)≤ [N (2)

s −N
(2)
t ](ω) for all s ∈ [t, T ]. From

there, it follows, as in the proof of Proposition 4.1, that if π1 denotes a policy over [t, T ] able to

attain V
(1)
t (k,λ1), then we can replicate its expected value under the process λ

(2)
t started on λ2 at

time t by constructing a virtual rate process λ′t started on λ1, decaying at rate β1, and jumping

with jumps of size α1, at the times ti where simultaneously, the original process λ
(2)
t jumps, and the

independently drawn Bernoulli random variable Zi is equal to 1, set to happen with probability

λ′ti/λ
(2)
ti
∈ [0,1]. This proves V

(2)
t (k,λ2) ≥ V (1)

t (k,λ1). We obtain (i) by setting α1 = α2 = α and

β1 = β2 = β to get the same shot noise stochastic process. We obtain (ii) by setting λ1 = λ2 = λ to

get the same start rate at time t. �

In addition, the value function Vt(k,λt) is concave in k, for any time t∈ [0, T ]. The proof is similar

to that of Proposition 4.4 using augmented states for V
π`
t (k`, λt) and Aπ`s (x

π`
s− , λs) for `= 1,2.

Figure 6 illustrates the patterns for the value function in theoretical findings when permissions

arrive according to the point process described in (26).

The monotonicity of the optimal action at(k,λt) in the charge level k and time t, established

in Propositions 6.1 and 6.3, is preserved for the intensity model (26); similar proofs are employed.

Figure 7, obtained under the self-exiting point process model, illustrates these characteristics.

9. Extension to Storage Models with Inefficiencies

Here we clarify how one can take into account the inefficiencies of physical storage devices, thereby

extending the perfectly efficient storage model assumed so far. In the presence of a storage self-

discharging rate per hour, denoted by γloss, the value Vτ1,t(k − a) in equation (5) is replaced by
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Figure 6 Optimal value function structure under the self-exciting shot process for permission arrivals.
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Figure 7 Optimal policy structure under the self-exciting shot process for permission arrivals.

Vτ1,t([1− γloss(τ1,t − t)]+(k − a)). In the computational scheme in equation (14), both Vt(k) and

Vt(k− a) are replaced by Vt([1− γlossδ]
+k) and Vt([1− γlossδ]

+(k− a)).

When the storage discharging efficiency, denoted by η, is strictly less than one, the reward Rt(a)

in (5) as well as in (14) are replaced by Rt(ηa). Limitations on the discharging rate are captured

by bound constraints on a when defining feasible actions. More precisely, denote the minimum

and maximum discharging power of the storage unit by amin and amax. Hence, the expression of

the feasible set Ak should include the constraints amin ≤ a ≤ amax. The structural results will be

preserved under these modifications.

10. Conclusion and Discussion

A novel approach to promote distributed energy storage deployment and participation in unsched-

uled transactions at the level of the distribution grid is proposed. This framework is promising since

it enjoys several attractive features: (i) it involves nonbinding commitments, (ii) offers attractive

financial benefits and flexibility for both parties, and (iii) enables the utility company to indirectly

supervise operations of the energy storage units.

As the very first step to specify and value this framework, we need to study the optimal behavior

of energy storage under the assumption that it is permitted to operate only at random times over a
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finite horizon. Thus this paper limits its scope to characterizing this component of the framework.

Two salient properties of the energy storage operation model in this paper include the random

operation times and nonlinear pricing scheme.

The results established in this paper have immediate relevance for both energy storage owners

as well as electricity distribution companies, energy policy makers, and contract underwriters. The

computed optimal policy can be used by the storage operators to obtain a more precise valuation

of the energy storage unit and support their investment decisions. The derivation of the optimal

policy as well as the properties of the storage owner’s value function enable the utility company

involved in the contract to predict the response behavior of the storage controllers and the expected

discharge amounts to better design the details of the framework.

Our results imply that this model is a promising framework for further research and applications

in the efficient energy storage deployment and transactive energy markets. It is noteworthy to

observe that if permissions sent at a rate λ to a certain area were assigned with probability pj to a

storage resource j within that area, then the input process seen by resource j is again Poisson, with

rate pjλ. Hence, the mathematical treatment of the one-storage resource presented in this paper

can be seen as a fundamental building block for the coordination of multiple storage resources.

Appendix A: Proofs

Proof of Proposition 4.1 (a) For times t1 and t2 with t1 < t2, let k be the charge level. Con-

sider an optimal discharge policy π2 ∈ Πt2 over [t2, T ] starting at the state xπ2
t2

= k, i.e., xπ2 ∈

argmaxπ∈Πt2
V π
t2

(k). Then the policy π1 resulting in the stored quantity process xπ1 = {xπ1
t }t∈[t1,T ]

in which xπ1
t = k for t∈ [t1, t2] and xπ1

t = xπ2
t for t∈ (t2, T ] is an admissible control for discharging k

units over [t1, T ], which yields Vt1(k)≥ V π1
t1

(k) = V π2
t2

(k) = Vt2(k). This completes the proof of (a).

(b) Fix charge levels k1, k2 at time t, such that 0< k1 ≤ k2. Let π1 ∈ Πt be an optimal policy

over [t, T ] from the state k1, i.e., xπ1
t = k1 and Vt(k1) = V π1

t (k1). We have

Vt(k1) =E

NT−−Nt−∑
i=1

Rτi,t

(
xπ1
τi−1,t

−xπ1
τi,t

)
+RT (xπ1

T )
∣∣∣ xπ1

t = k1


=E

Rτ1,t (k1−xπ1
τ1,t

)
+

N
T−−Nt−∑
i=2

Rτi,t

(
xπ1
τi−1,t

−xπ1
τi,t

)
+RT (xπ1

T )


≤E

Rτ1,t (k2−xπ1
τ1,t

)
+

N
T−−Nt−∑
i=2

Rτi,t

(
xπ1
τi−1,t

−xπ1
τi,t

)
+RT (xπ1

T )

= V π2
t (k2), (A.1)

where the policy π2 starting from the state k2 is an admissible policy over [t, T ], with the store

quantity process xπ2
s = k2 for s ∈ [t, τ1,t) and xπ2

s = xπ1
s for s ∈ [τ1,t, T ]. The inequality in (A.1)

comes from the assumption that the reward function Rt is increasing in the amount discharged and
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0<k1 ≤ k2. Hence, Rτ1,t(k1−xτ1,t)≤Rτ1,t(k2−xτ1,t). Therefore, Vt(k2) = max
π∈Πt

V π
t (k2)≥ V π2

t (k2)≥

Vt(k1), which completes the proof of part (b). �

Proof of Proposition 4.4. Fix some charge levels k1, k2 at time t, such that 0 < k1 ≤ k2. Let

π1 and π2 be optimal Markov discharge policies, respectively, starting from the charge level k1

and k2. Hence, Vt(k1) = V π1
t (k1) and Vt(k2) = V π2

t (k2). For any α ∈ [0,1], define the charge level

kα
def
= (1−α)k1 +αk2. Consider the controlled process xα over [t, T ] defined as below

xαt = kα, dxαs =−
(
(1−α)Aπ1

s

(
xπ1

s−

)
+αAπ2

s

(
xπ2

s−

))
dNs, ∀s∈ (t, T ), xαT = xαT− . (A.2)

Note that in general this is not equivalent to applying some Markov strategy to xαt , in particular

the strategy keeps track of π1 and π2 started at charge levels k1 and k2. It follows from (A.2) that

xαs = (1− α)xπ1
s + αxπ2

s , for all s ∈ [t, T ]. From the feasibility of the policies π1 and π2, we have

0≤Aπ`s
(
x
π`
s−

)
≤ xπ`s , for `= 1,2. Hence, 0≤ (1−α)Aπ1

s

(
xπ1

s−

)
+αAπ2

s

(
xπ2

s−

)
≤ (1−α)xπ1

s +αxπ2
s = xαs ,

which implies that xα in (A.2) is an admissible charge process starting at kα.

For any realization ω of the Poisson process {Ns}s∈R+
, equality xαs = (1−α)xπ1

s +αxπ2
s implies

that the difference of charge levels in the process xα between two consecutive arrival times τi−1,t(ω)

and τi,t(ω) is the convex combination of the differences of charge levels in the processes xπ1 and

xπ2 . This along with concavity of the reward function Rτi,t(ω) implies that

Rτi,t(ω)

(
xατi−1,t(ω)−xατi,t(ω)

)
=Rτi,t(ω)

(
(1−α)xπ1

τi−1,t(ω) +αxπ2

τi−1,t(ω)− (1−α)xπ1

τi,t(ω)−αx
π2

τi,t(ω)

)
=Rτi,t(ω)

(
(1−α)

(
xπ1

τi−1,t(ω)−x
π1

τi,t(ω)

)
+α

(
xπ2

τi−1,t(ω)−x
π2

τi,t(ω)

))
≥ (1−α)Rτi,t(ω)

(
xπ1

τi−1,t(ω)−x
π1

τi,t(ω)

)
+αRτi,t(ω)

(
xπ2

τi−1,t(ω)−x
π2

τi,t(ω)

)
. (A.3)

Similarly, concavity of RT and xαs = (1−α)xπ1
s +αxπ2

s yield

RT (xα(ω)) =RT ((1−α)xπ1
T (ω) +αxπ2

T (ω))≥ (1−α)RT (xπ1
T (ω)) +αRT (xπ2

T (ω)) . (A.4)

Taking the sum from i= 1 to NT−(ω)−Nt−(ω) of inequalities (A.3) and of (A.4) results in

N
T− (ω)−N

t− (ω)∑
i=1

R
(
xατi−1,t(ω)−xατi,t(ω)

)
+RT (xαT )≥ (1−α)

N
T− (ω)−N

t− (ω)∑
i=1

R
(
xπ1

τi−1,t(ω)−x
π1

τi,t(ω)

)

+RT (xπ1
T (ω)) +α

N
T− (ω)−N

t− (ω)∑
i=1

R
(
xπ2

τi−1,t(ω)−x
π2

τi,t(ω)

)
+RT (xπ2

T (ω)).

Since this inequality holds for any instance ω of the arrival process {Ns}s∈R+
, we have

E

NT−−Nt−∑
i=1

R
(
xατi−1,t

−xατi,t
)

+RT (xαT )

≥
(1−α)E

NT−−Nt−∑
i=1

R
(
xπ1
τi−1,t

−xπ1
τi,t

)
+RT (xπ1

T )

+αE

NT−−Nt−∑
i=1

R
(
xπ2
τi−1,t

−xπ2
τi,t

)
+RT (xπ2

T )


= (1−α)V π1

t (k1) +αV π2
t (k2) = (1−α)Vt(k1) +αVt(k2).
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Since the value function at time t and at state kα is at least equal to the value of the admissible

policy defined in (A.2), we have

Vt(k
α) ≥E

NT−−Nt−∑
i=1

R(xατi−1,t
−xατi,t) +RT (xαT )

≥ (1−α)Vt(k1) +αVt(k2),

which establishes the concavity of Vt in k. �

Proof of Proposition 4.5. Fix the charge level k. For any given ε > 0, let δε > 0 be such that

crλ (δε + 2T (1− e−λδε))< ε. Consider any times t1 and t2 such that |t1 − t2|< δε. Without loss of

generality, assume that t1 ≤ t2. Let π1 ∈ Πt1 be an optimal policy over [t1, T ] starting from the

charge level xπ1
t1

= k. Therefore, Vt1(k) = V π1
t1

(k). In addition, let π2 ∈Πt2 be any admissible policy

over [t2, T ] starting from state k at time t2 as xπ2
t2

= k. Therefore, Vt2(k)≥ V π2
t2

(k). Hence,

|Vt1(k)−Vt2(k)| = Vt1(k)−Vt2(k) = V π1
t1

(k)−Vt2(k)≤ V π1
t1

(k)−V π2
t2

(k), (A.5)

where the first equality comes from Proposition 4.1 which yields Vt1(k)≥ Vt2(k).

Note that, since the reward function is bounded above by cr, we have

E


N

t
−
2

−N
t
−
1∑

i=1

Rτi,t1

(
xπ1
τi−1,t1

−xπ1
τi,t1

) ∣∣∣ xπ1
t1

= k

≤ crλ(t2− t1)< crλδε, (A.6)

and consequently,

V π1
t1

(k) < crλδε +E


N

T−−N
t
−
1∑

i=N
t
−
2

−N
t
−
1

+1

Rτi,t1

(
xπ1
τi−1,t1

−xπ1
τi,t1

) ∣∣∣ xπ1
t1

= k

 .
Note that for any i≥Nt−2

−Nt−1
+1, τi,t1 = τ(i−N

t−2
+N

t−1
),t2 . Thus, the index in the above summation

can be rewritten to start from 1 to NT− −Nt−2
to label arrival times τi,t2 . Therefore, we arrive at

V π1
t1

(k)−V π2
t2

(k)< crλδε +Q, where

Q
def
= E


N

T−−N
t
−
2∑

i=1

Rτi,t2

(
xπ1
τi−1,t2

−xπ1
τi,t2

) ∣∣∣ xπ1
t1

= k

−E


N

T−−N
t
−
2∑

i=1

Rτi,t2

(
xπ2
τi−1,t2

−xπ2
τi,t2

) ∣∣∣ xπ2
t2

= k

 .
Define the events A

def
= {τ1,t1 > t2} and B

def
= {τ1,t1 ≤ t2}. When the event A occurs, the policy π1,

starting from charge level k1 at time t1, results in xπ1
t2

= k. Therefore, E[Q|A] = 0. By invoking

the upper bound on the reward function, each expectation in Q is bounded above by crλ(T −

t2), which is no greater than crλT . Hence, E[Q|B] ≤ 2crλT . By using Pr(B) = 1− e−λ(t2−t1), we

get E[Q] = E[Q|B]Pr(B) ≤ 2crλT
(
1− e−λ(t2−t1)

)
< 2crλT (1− e−λδε). Replacing this inequality in

V π1
t1

(k)−V π2
t2

(k)< crλδε +Q and (A.5) yields

|Vt1(k)−Vt2(k)|< crλδε + 2crλT
(
1− e−λδε

)
< ε,

which completes the proof of continuity of the function Vt in t. �
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Çınlar, E. (2011). Probability and Stochastics. Springer, New York.

Culot, M., V. Goffin, S. Lawford, S. de Menten, and Y. Smeers (2006). An affine jump diffusion model for

electricity. working paper, Université Catholique de Louvain pp. 1–51.
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