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This paper studies least-squares approximate policy iteration (API) methods with parametrized value-

function approximation. We study several variations of the policy evaluation phase, namely, Bellman error

minimization, Bellman error minimization with instrumental variables, projected Bellman error minimiza-

tion, and projected Bellman error minimization with instrumental variables. For a general discrete-time

stochastic control problem, Bellman error minimization policy evaluation using instrumental variables is

equivalent to both variants of the projected Bellman error minimization. An alternative to these API methods

is direct policy search based on knowledge gradient. The practical performance of these three approximate

dynamic programming methods, (i) least squares API with Bellman error minimization, (ii) least squares

API with Bellman error minimization with instrumental variables, and (iii) direct policy search, are inves-

tigated in the context of an application in energy storage operations management. We create a library of

test problems using real-world data and apply value iteration to find their optimal policies. These optimal

benchmarks are then used to compare the developed approximate dynamic programming policies. Our anal-

ysis indicates that least-squares API with instrumental variables Bellman error minimization prominently

outperforms least-squares API with Bellman error minimization. However, these approaches underperform

our direct policy search implementation.

Key words : dynamic programming, approximate dynamic programming, approximate policy iteration,

Bellman error minimization, direct policy search, energy storage

History :

1. Introduction

It is long recognized that the powerful theory of discrete Markov decision processes (Put-

erman 1994) is limited by the well known curse of dimensionality, which can be traced to

the need to compute the value of being in each discrete state or, more problematically,

the probability of transitioning from one discrete state to another given an action. Known
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as a flat representation in computer science, even small problems quickly blow up using

this model. The field of approximate dynamic programming (Bertsekas and Tsitsiklis 1996,

Powell 2011, Bertsekas 2012) and reinforcement learning (Sutton and Barto 1998, Szepes-

vari 2010) have offered the hope of partially overcoming this problem by replacing the value

function using a statistical approximation (in particular, linear regression), allowing us to

draw on approximate versions of powerful algorithmic strategies such as value iteration

and policy iteration (Puterman 1994).

Somewhat surprisingly, while we have found in our own work that approximate value

iteration (AVI) works well for very specific problem classes (Topaloglu and Powell 2006,

Simao et al. 2009, He et al. 2012, Nascimento and Powell 2013), it does not work as

a general algorithmic strategy; our success with AVI has always been in the context of

problems where we could exploit convexity. The computer science community has focused

considerable efforts on a strategy called Q-learning, which involves learning the value of a

state-action pair rather than just the value of being in a state (Sutton and Barto 1998).

Q-learning enjoys rigorous convergence theory for lookup table representations (Tsitsiklis

1994), but this does not scale even to small problems. Approximating Q-factors with linear

models is more art than science. Convergence results (Sutton et al. 2009b, Maei et al. 2009)

do not contain any performance guarantees and are focused on establishing convergence of a

particular approximating architecture. In addition, empirical comparisons against optimal

benchmarks are scarce.

Perhaps for this reason, approximate policy iteration (API) has attracted considerable

recent attention, see e.g. Bertsekas (2012), Buşoniu et al. (2012) and the review in Powell

and Ma (2011). API avoids the need to approximate the value of a state-action pair,

and enjoys stronger convergence theory, although this always involves assumptions that

are unlikely to be perfectly satisfied in practice. However, we are still unaware of any

comparisons against optimal benchmarks.

This paper uses the setting of a class of energy storage problems that requires balancing

power from the grid and power from a stochastic, renewable source, to serve a load (that

is sometimes time varying), with access to an energy storage device. The software con-

taining these benchmark problems is available at https://castlelab.princeton.edu/datasets.

We solve the created problems to obtain optimal policies, which provide us with rigor-

ous benchmarks to accurately assess the quality of the solutions produced by different

algorithmic strategies.
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In this paper, we focus on the use of linear architectures for approximating the value

function, a strategy that has received the most attention in the literature. We model our

problem in steady state, which allows us to use a powerful algorithmic strategy called

Least-Squares Policy Iteration (LSPI), introduced by Lagoudakis and Parr (2003). This

approach builds on the Least-Squares Temporal-Difference (LSTD) learning algorithm (see

e.g. Section 8 of Powell (2011)), proposed by Bradtke and Barto (1996) to estimate the

value of a fixed policy. The LSTD method is one of the batch variants of the tempo-

ral difference (TD) learning. LSTD tends to be statistically efficient and extracts more

information from training experiences and converges faster, compared to other typical

TD learning methods. Lagoudakis and Parr (2003) introduces the idea of using sample

experiences and linear approximation architectures for incremental policy improvement

within a policy-iteration framework. To learn the state-action value function, Lagoudakis

and Parr (2003) discusses and compares two policy evaluation methods: (i) Bellman error

minimizing approximation which minimizes the L2 norm of the Bellman error, i.e., the

difference between the left-hand side and the right-hand side of the Bellman equation,

(ii) Least-squares fixed-point approximation which seeks an approximate fixed point of

the Bellman operator considering the orthogonal projection. The least-squares fixed-point

approximation minimizes the projection of the distance that the Bellman error minimizing

approximation minimizes. We investigate integrating instrumental variables into these two

policy evaluation methods. We formally show that the policy evaluation with instrumental

variables is equivalent to the policy evaluation with projected Bellman error minimiza-

tion, as well as the hybrid policy evaluation combining both instrumental variables and

projected Bellman error minimization.

Although our focus is on using exact benchmarks to derive insights into different algo-

rithmic strategies, our choice of energy storage is motivated by the importance of this

problem class. This dynamic optimization problem can be considered an extension of the

stochastic inventory management problem, see e.g. Porteus (2002). Growing interests in

renewables and advances in energy storage technology have increased the interest in the

energy storage operation optimization. For example, Barton and Infield (2004) analyzes

three control policies and their corresponding expected revenues, assuming probabilistic

models for load and wind, and a load-price curve for the electricity price. Carmona and

Ludkovski (2005) and Lai et al. (2010) investigate the operation and valuation of a gas
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storage device. Greenblatt et al. (2007) and Swider (2007) discuss incorporating a com-

pressed air energy storage with wind power generation in energy systems. Maximization

of the expected market profit of a wind farm and hydro pumped storage over a finite hori-

zon to comply with commitments in the market is addressed in Gonzalez et al. (2008).

This problem is formulated as a two-stage stochastic optimization problem with uncertain

prices and wind generation. Hu and Defourny (2017) investigate optimization of grid-level

battery storage under battery aging consideration. A computationally efficient nonstation-

ary direct policy search approach is developed in Moazeni et al. (2017) to optimize the

operation of energy storage in the presence of a renewable resource to serve a load, while

taking market risk into consideration. The problem of commodity storage management

using high-dimensional models for forward prices is studied in Nadarajah et al. (2015),

where approximate linear programing approaches for the resulting dynamic programming

problem are investigated. Optimal operation an energy storage unit under random allowed

operation times over a finite time horizon is studied in Moazeni and Defourny (2018). For

a thorough review of this growing literature, we refer the reader to Moazeni et al. (2015),

Halman et al. (2018) and the references therein.

For our energy storage application, we created a library of test problems using realistic

data, constrained by the goal of creating optimal benchmarks. Optimal policies for these

problems are computed using exact value iteration (Puterman 1994). While these problems

are relatively simple, CPU times to estimate these policies typically ranged around two

weeks. These benchmarks are then used to compare the approximate policies based on

least-squares API and direct policy search. These experiments show that least-squares

API with instrumental variables Bellman error minimization performs significantly better

than the least-squares API with the Bellman error minimization without instrumental

variables. Yet even this advanced algorithmic strategy falls far short of optimal. Direct

policy search outperforms (in terms of achieving percentage of optimality) both least-

squares API policies by a wide margin. Since the structure of the policy in the policy

improvement phase is identical in all algorithms, the issue is not the accuracy of the

approximating architecture for the value function, but rather the estimation procedure,

calling into question the validity of Bellman error minimization.

This paper makes the following contributions. 1) We introduce and prove the consistency

of a hybrid policy based on least squares API that combines instrumental variables and
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projected Bellman error minimization. 2) We develop a set of benchmark problems using

the important context of energy storage where we are able to derive optimal policies.

3) We calculate approximate policies using least-squares API with basic Bellman error

minimization, least-squares API with instrumental variables Bellman error minimization,

and direct policy search, and compare the results against optimal benchmark policies and

the myopic policy.

We provide an overview of API in §2, where several policy evaluation methods based on

Bellman error minimization are also discussed. Direct policy search and knowledge gradi-

ent are presented in §3. The energy storage management problem, its underlying stochastic

processes, and its stochastic dynamic optimization formulation are explained in §4. Per-

formance of the computed approximate dynamic programming policies is investigated and

compared with benchmark problems in §5. Limitations of the present study are discussed

in §6. Concluding remarks are given in §7.

2. Approximate Policy Iteration Algorithm

Stochastic dynamic programming for maximizing expected revenues relies on the Bellman

optimality equation given by

V (St) = max
x∈Xt

EWt+1 [C (St, x) + γ V (St+1) |St] . (1)

Here, St refers to the state variable at time step t, C(St, x) is the contribution function

at state St and action x, Xt is the feasible region for decisions at time t, V (·) is the

value function (around the pre-decision state St), and 0 ≤ γ < 1 is the discount factor.

The expectation in equation (1) is over the exogenous random changes, denoted by Wt+1,

in the state of the system. The state variable at the next step is then obtained by the

transition function T , i.e., St+1 = T (St, x,Wt+1). Throughout, we use the convention that

any variable indexed by t is known at time t.

Computing the expected value of V (St+1) is often challenging and needs to be approxi-

mated. To avoid this, a modified version of the Bellman equation based on the post-decision

state variables can be adopted, see e.g. Judd (1998), Bertsekas (2012) and Section 4.6 of

Powell (2011) for a thorough discussion of post-decision states. The post-decision state

variable, denoted by Sxt , refers to the state immediately after being in the pre-decision

state St and taking the action x, but before any exogenous information (randomness) from
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the state transition has been revealed. The value of being in the post-decision state Sxt is

denoted by V x(Sxt ), and is related to the value function as follows:

V x (Sxt )
def
= EWt+1 [V (St+1) | Sxt ] .

Thus, the Bellman equation (1) around the post-decision state variables can be written as

V x′(Sx
′

t−1) = EWt

[
max
x∈Xt

{C (St, x) + γ V x (Sxt )} | Sx′t−1

]
. (2)

The expectation being outside of the maximum operator allows us to solve the inner

maximization problem using deterministic optimization techniques. The policy optimal

with respect to the post-decision value function is then given by

Xπ(St)∈ argmaxx∈Xt {C (St, x) + γ V x (Sxt )} . (3)

For most applications, however, when the state variable is multidimensional and con-

tinuous, Bellman equations (1) or (2) cannot be solved exactly; as a result a large field of

research on approximation techniques has evolved, see e.g. Bertsekas and Tsitsiklis (1996),

Sutton and Barto (1998), Szepesvari (2010), Powell (2011). We focus on the widely used

approach of approximating the value function with linear architectures of the form

V̂ x(Sxt )
def
=

K∑
k=1

θk φk (Sxt ) = θ>φ (Sxt ) , (4)

where {φk(Sxt )}Kk=1 is a set of K given basis functions, φ (Sxt ) is the column feature vector

with elements φk(S
x
t ), and θ is the column parameter vector associated with the basis

functions. For further discussion on basis functions, see e.g. Menache and Shimkin (2005),

Heuberger et al. (2005), Konidaris and Osentoski (2008). Substituting approximate post-

decision value functions (4) into equations (2) and (3), we get

θ>φ
(
Sx
′

t−1

)
≈E

[
C (St, x) + γ θ>φ (Sxt ) | Sx′t−1, x=X π̂ (St|θ)

]
, (5)

where

X π̂(St|θ)∈ argmaxx∈Xt
[
C (St, x) + γ θ>φ (Sxt )

]
. (6)

A value of the weight vector θ, at which equation (5) holds for all states, would yield the

optimal value function and an optimal policy. However, in general, a fixed point satisfying
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this equation does not exist (De Farias and Van Roy 2000), and only a value of θ which

approximately solves equation (5) can be sought.

The approximate policy iteration (API) approach alternates between a policy evaluation

phase which approximately evaluates the current policy by estimating the value func-

tion, and a policy improvement phase in which a new (improved) policy is generated. For

API with linear architectures to approximate the value functions, the policy improvement

phase employs equation (6), while the development of a policy evaluation step relies on

equation (5). The procedure is repeated for M iterations, where M is a user-controlled

parameter, allowing to generate improving policies that converge to the optimal policy.

2.1. Least-Squares Approximate Policy Iteration Algorithm

A family of API algorithms, referred to as least-squares approximate policy iteration

(LSPI), was introduced in Lagoudakis and Parr (2003). Assuming finite states and actions,

LSPI approximates the value of state-action pairs (Q-factors) with a linear architecture,

and incrementally improves the policy within a policy-iteration framework. Several meth-

ods of approximately solving the Bellman equation and their geometric interpretations are

discussed in Lagoudakis and Parr (2003). Instances of the LSPI algorithmic family differ

in the specific policy evaluation procedure employed. This algorithm extends the least-

squares temporal-difference (LSTD) learning algorithm of Bradtke and Barto (1996) to

control problems. For further discussion on the convergence of TD learning and the LSPI

method, the reader is referred to Tsitsiklis and Van Roy (1997), De Farias and Van Roy

(2000), Lagoudakis and Parr (2003).

We draw on the foundation provided in Bradtke and Barto (1996), adopted for the

post-decision state. We focus on the off-policy case, where a set of N post-decision states

{Sx
′
n
t−1,n}Nn=1 are generated randomly, and then for each sample n, we simulate the state St,n

and the corresponding next state decision xn
def
= X π̂(St,n|θ) computed by equation (6). For

a set of N samples
{(
S
x′n
t−1,n, St,n, xn,C(St,n, xn), Sxnt,n

)
| n= 1,2, · · · ,N

}
, define

Ct
def
=


C(St,1, x1)

...

C (St,N , xN)

 , Φt
def
=


φ(Sx1

t,1)
>

...

φ(SxNt,N)>

 . (7)

Here, Ct is a column vector of dimension N , while Φt is a matrix of size N ×K. Each

row of Φt contains the value of all basis functions for a certain post decision state variable
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Sxnt,n. Similarly, the nth row of the matrix Φt−1 is φ(S
x′n
t−1,n)>. Variations of the least-squares

API algorithm aim to find a weight vector θ that satisfies the Bellman equation as closely

as possible by solving a least-squares problem (see Section 2.2) for the following over-

constrained linear system

Ct ≈ (Φt−1− γΦt)θ. (8)

For a given value of θ, we refer to Ct − (Φt−1− γΦt)θ as Bellman errors or Bellman

residuals, which expresses the difference between the left-hand side and the right-hand

side of the Bellman equation. An overview of the least-squares API algorithm is given in

Figure 1.

Least-Squares Approximate Policy Iteration Algorithm

(01) Initialize θ.

(02) for m= 1 to M (Policy Improvement Iterations)

(03) Given θ, define the policy x=X π̂(St|θ) using equation (6)

(04) for n= 1 to N

(05) Simulate a random post-decision state, S
x′n
t−1,n

(06) Compute φ(S
x′n
t−1,n)

(07) Simulate the state transition to get St,n

(08) Determine the decision xn =X π̂(St,n|θ)
(09) Compute C(St,n, xn) and φ(Sxnt,n) corresponding to decision xn

(10) End

(11) Update θ using equation (10), or (11), or (14), or (15). (Policy Evaluation)

(12) End

Figure 1 Least-Squares API Algorithm

Next, we elaborate on the policy evaluation step.

2.2. Policy Evaluation Procedures

We focus on policy evaluation approaches based on LSTD and investigate variants of

policy evaluation algorithms using Bellman error minimization and projected Bellman error

minimization. The following assumption is made to rule out redundant parameters in the

value function approximation architecture:
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Assumption 2.1 The matrices Φt−1, (Φt−1− γΦt), and Φ>t−1(Φt−1− γΦt) have full rank,

and K ≤N .

For least-squares Bellman error minimization, the objective is to minimize the Euclidean

norm of the Bellman errors,

min
θ
‖Ct− (Φt−1− γΦt)θ‖2

2 . (9)

Applying the typical method of least-squares, a solution of equation (9) equals

θ̂LSBEM
def
=
(
(Φt−1− γΦt)

>(Φt−1− γΦt)
)−1

(Φt−1− γΦt)
>Ct, (10)

to which we refer as the Least-Squares Bellman Error Minimization (LSBEM) estimator.

The matrix of regressors, (Φt−1−γΦt), is not deterministic (Φt is not deterministic because

we cannot calculate E[φ(Sxt )|Sxt−1]); we can only simulate φ(Sxt ) given Sxt−1 and, as a result,

the least-squares estimator for θ will typically be inconsistent.

A class of simple and computationally efficient techniques to obtain consistent esti-

mates, without modeling the noise, is instrumental variable methods. An instrumental

variable is a variable that is correlated with the regressors, but uncorrelated with the

errors in the regressors and the observations, see e.g. Durbin (1954), Kendall and Stu-

art (1961), Söderström and Stoica (1983), Bowden and Turkington (1984), Young (2011).

Appendix A provides a brief overview of instrumental variable methods. Instrumental vari-

ables have been previously used in the context of API algorithms, see e.g. Bradtke and

Barto (1996), but otherwise have not received much attention, even in the reinforcement

learning literature. The method of instrumental variables is used in LSTD to compen-

sate for the use of Monte Carlo simulation to approximate the expected cost in Ct,i
def
=

E[C(St,i,X
π̃(St,i|θ))|Sxt−1,i]. This results in the Instrumental Variables Bellman Error Min-

imization (IVBEM) vector,

θ̂IVBEM
def
=
(
Φ>t−1 (Φt−1− γΦt)

)−1
Φ>t−1Ct. (11)

It can be proved that the linear least-squares function approximation with the instru-

mental variables method leads to a consistent estimator (θ̂IVBEM → θ as N →∞, with

probability one). The proof references the consistency properties of the method of instru-

mental variables by showing that the columns of Φt−1 are appropriate instrumental vari-

ables (see Lemma 2 in Bradtke and Barto (1996) and Appendix A). Note that the matrix(
Φ>t−1(Φt−1− γΦt)

)
could have negative eigenvalues, unlike

(
(Φt−1− γΦt)

>(Φt−1− γΦt)
)
.
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The idea of projected Bellman error minimization, also called least-squares fixed-point

approximation, is to first project the Bellman errors down onto the space spanned by

the basis functions defining the value function and then minimize the Bellman errors, see

Lagoudakis and Parr (2003), Sutton et al. (2009a). Define the projection operator

Πt−1 = Φt−1(Φ
>
t−1Φt−1)

−1Φ>t−1, (12)

on the space spanned by the basis functions; see Tsitsiklis and Van Roy (1997) for the

original derivation of this mapping, or Section 8.2.3 of Powell (2011). It follows from

Assumption 2.1 that the matrix Φt−1 has full column rank, and hence Πt−1 is well-defined.

We refer to Πt−1Ct − Πt−1(Φt−1 − γΦt)θ as the projected Bellman error. Taking a least

squares approach, we find θ by minimizing the norm of the projected Bellman error

min
θ
‖Πt−1Ct−Πt−1(Φt−1− γΦt)θ‖2 . (13)

The least-squares estimator of θ then yields the Least-Squares Projected Bellman Error

Minimization (LSPBEM) estimator, given by

θ̂LSPBEM
def
=
(

(Πt−1 (Φt−1− γΦt))
> (Πt−1 (Φt−1− γΦt))

)−1

(Πt−1 (Φt−1− γΦt))
>Πt−1Ct, (14)

To establish a consistent estimator for θ, similar to the derivation of equation (11), Z =

Φt−1 can be used as an instrumental variable, see Appendix A or the proof in Bradtke and

Barto (1996). We refer to the resulting estimator as the Instrumental Variables Projected

Bellman Error Minimization (IVPBEM),

θ̂IVPBEM
def
=
(
Φ>t−1Πt−1 (Φt−1− γΦt)

)−1
Φ>t−1Πt−1Ct. (15)

Consistency of the IVPBEM estimator is established in Theorem B.1 in Appendix B. For

similar results on the consistency of LSTD methods, the reader is referred to Kolter (2011),

Yu (2012), Dann et al. (2014). We note that Πt−1Φt−1 could also have been used as the

instrumental variable instead of Φt−1. However, it is easy to see that the obtained estimator

would be equivalent to that in equation (15).

The following proposition formalizes the relationship among the three estimators in

equations (11), (14), and (15), under Assumption 2.1.

Proposition 2.1 The policy evaluation algorithms IVBEM, LSPBEM, and IVPBEM are

equivalent.
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A proof of Proposition 2.1 is provided in Appendix C. This result was also noted in Antos

et al. (2008), and further discussed in Szepesvari (2010) and Dann et al. (2014). Our

numerical results in Section 5 indicate that the LSBEM is not equivalent to IVBEM, and

whence, the two others.

3. Direct Policy Search

An alternative approximate dynamic programming approach to find the policy parameter

vector θ is direct policy search. Consider policies parameterized by θ of the form in equation

(6), in which the value function has been replaced by a function approximator linear

in adjustable parameters and a feature vector representing states. In contrast to policy

iteration or value iteration methods, the goal in direct policy search is not necessarily to

estimate the value at every state which is close (with respect to some norm) to the true

value function; the objective is to find a parameter vector θ for which the parametrized

policy performs well, i.e., it solves the following stochastic optimization problem

max
θ

V π(S0), (16)

given the policy structure Xπ(St|θ), and the initial state S0. The value of θ which maximizes

equation (16) produces the best policy within the class of polices, Xπ(St|θ). Solving this

problem becomes challenging, particularly as the dimension of θ grows. Furthermore, the

optimization problem given by equation (16) is typically non-convex and non-separable.

For further discussion on direct policy search methods and computational approaches,

see Moazeni et al. (2016, 2017). Note that, in direct policy search, we only need to consider

features which are functions of the decisions.

Classic stochastic optimization algorithms can be used to sequentially choose policies

to simulate. When the dimension of θ is small, the Knowledge Gradient for Continuous

Parameters (KGCP) policy has been shown to work well for efficiently optimizing θ, see

e.g. Scott et al. (2011). In our experiments, θ is limited to two or three dimensions. The

KGCP approach is explained next.

3.1. The Knowledge Gradient for Direct Policy Search

For a given θi, a noisy observation of the objective in (16) can be obtained by simulating

µ(θi)
def
=

∞∑
t=0

γtCt(St,X
π(St|θi)). (17)
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The KGCP policy for optimizing θ treats the objective function µ(θ) as a Gaussian process

regression. This policy relies on a criterion which chooses the next value of θ for which a

noisy observation of µ(θ) is simulated. The KGCP quantifies how much the maximum of

the objective is expected to increase by getting an additional noisy observation of µ(θ) at

a particular value of θ.

More formally, let Fn be the sigma-algebra generated by θ0, · · · , θn−1 and the corre-

sponding noisy observations of µ(θ0), · · · , µ(θn−1). Denote the updated expected values of

µ at θi, conditioned on Fn, by µn(θi). Define the KGCP quantity as

νKG,n(θ)
def
= E

[
max
i=0,..,n

µn+1(θi)

∣∣∣∣Fn, θn = θ

]
− max

i=0,..,n
µn(θi)|θn=θ. (18)

The next sampling decision is then chosen to maximize the KGCP quantity,

θn ∈ arg max
θ

νKG,n(θ). (19)

After N observations, the implementation decision θ∗ is chosen by maximizing µN(θ), i.e.,

θ∗ ∈ arg max
θ

µN(θ).

In the Gaussian process regression framework, µn+1(θ) given Fn is normally distributed

for each value of θ, and consequently the KGCP quantity and the KGCP policy can be

calculated exactly, see Scott et al. (2011) or Chapter 16 of Powell and Ryzhov (2012). The

KGCP policy converges asymptotically to the optimal value of θ for problem (16).

4. Benchmark Application: Energy Storage Operation

Consider a power system as shown in Figure 2, involving an intermittent energy supply, an

electricity demand, an interconnecting grid, and a battery storage device. At time t, the

energy flows are given by the vector xt
def
=
(
xWR
t , xGRt , xRDt , xWD

t , xGDt
)
, where xIJt denotes

the amount of energy transferred from I to J at time step t. The superscript W stands

for energy source (wind), D for demand, R for storage, and G for grid. These entities are

assumed to be nonnegative except xGRt . A negative value for xGRt refers to selling electricity

from the storage to the grid.

Denote the total electricity demand (in MWh) over the time period starting at t−∆t

and ending at t, by Dt. At every time step, the demand Dt must be served through the

wind energy, available energy from the storage device, or energy purchased from the grid,

xGDt + ηdischargexRDt +xWD
t =Dt. (20)
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Figure 2 The energy system diagram.

Here, ηdischarge ∈ (0,1) denotes the discharging efficiency rate.

The wind energy generated during the time period [t−∆t, t), denoted by Et, first serves

the demand and the surplus is charged into the storage device for the future use, i.e.,

xWD
t = min{Et, Dt}, (21)

xWR
t +xWD

t =Et. (22)

Let Rcap indicate the total capacity of the storage device. Define the constants ∆Rmin

and ∆Rmax as the minimum and maximum fractions of the storage device that can be

charged over ∆t. For example, for a lead acid battery with a C/10 maximum charge and

discharge rates, and ∆t= 15min, ∆Rmin =−1/40 and ∆Rmax = 1/40. To avoid charging or

discharging the storage device faster than the permitted rates, xGRt must satisfy:

∆RminRcap

ηdischarge
≤ xGRt ≤

∆RmaxRcap

ηcharge
, (23)

where ηcharge ∈ (0,1) is the charging efficiency rate. Similarly, to ensure that the storage

device is not discharged faster than allowed when sending energy from the storage unit to

the demand, we include the constraint

0≤ xRDt ≤∆RmaxRcap. (24)

Since both ηdischarge < 1 and ηcharge < 1, transmitting energy from the grid to the demand

via the storage would be less efficient and more costly than directly sending energy from

the grid to the demand. The energy flow xt yield the next storage state Rt+∆t(xt) equal to

Rt+∆t(xt) = max
{
Rmin, min

{
Rt +

ηcharge(xGRt +xWR
t )−xRDt

Rcap ,1
}}

, (25)

where Rmin is the minimum fraction of the capacity of the storage device that must remain

full. For example, stationary lead-acid batteries with tubular plates, which are one of the
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lowest cost technologies for energy storage, should not be discharged below 20% of their

capacity, i.e., Rmin = 0.20, see e.g. Brunet (2011).

Constraints (20)-(25), together with the standard measurability conditions, define the

set of admissible policies. Uncertainties in the energy supply (wind), demand, and prices

are expressed through stochastic processes, to be explained in the following subsections.

4.1. Wind Energy

The energy output from the wind turbine over [t, t + ∆t) is computed by Et =

10−8

72
Cp ρ 502π w3

t ∆t, see e.g. MacKay (2009), Moazeni et al. (2015). Here, ρ= 1.225 kg/m3

is the density of air, Cp = 0.45 is the power coefficient, wt denotes the wind speed mea-

sured in meters per second, and ∆t is stated in seconds. Velocity of the wind, wt is given

by wt =
(
Y E
t +µE

)2
. Here, Y E

t evolves by an AR(1) model (see e.g. Brown et al. (1984)),

Y E
t = φEY

E
t−∆t +σE

√
∆tε̃t, where ε̃t ∼N (0,1). Using 15-min data from the wind speeds at

Maryneal, Texas and applying the Yule-Walker equations (see e.g. Carmona (2004)) to fit

the above model, we obtain µE = 1.4781, φE = 0.7633, σE = 0.4020.

4.2. Electricity Prices

Similar to Cartea and Figueroa (2005), we model the real-time electricity prices by Pt =

exp
(
Y s
t +Y ds

t

)
− c, with a deterministic seasonal component Y s

t . The deseasonalized log

prices are modeled by a discretized mean reverting jump diffusion process Y ds
t = Y ds

t−∆t +

λP (µP −Y ds
t−∆t)∆t+σP

√
∆t ε̃t +Jt, where µP is the long term equilibrium price, λP is the

mean reversion rate, ε̃t ∼N (0,1), and Jt denotes the jump over the interval [t−∆t, t). The

jumps are modeled by the i.i.d. process, Jt = α̃Jt 1 (ũt < pJ). Here, α̃Jt ∼N (0, σJ) is the jump

size, pJ is the probability of a jump over a time interval of length ∆t, and ũt ∼ unif(0,1).

The constant parameter c equals one minus the minimum value of Pt in the data set.

We use the approach in Cartea and Figueroa (2005) to estimate the model parameters.

For the real time electricity prices at the PJM Western Hub dataset, we get σJ = 0.4229,

pJ = 0.0170, λP = 1800.9, µP = 4.1995, σP = 11.0971, and c= 27.2531.

4.3. Electricity Demand

Eydeland and Wolyniec (2003) outline typical models for residential, commercial, and

industrial power demands. While industrial power demand is relatively stable, residential

power demand is highly dependent upon the temperature and exhibits seasonal variations.

Various load models and forecasting methods are discussed in Feinberg and Genethliou
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(2010). Similar to Pirrong and Jermakyan (2008), Moazeni et al. (2015), we adopt a demand

model with seasonality components Dt = mhour
t +mmonth

t +Dds
t . Here, mhour

t and mmonth
t

indicate the hour-of-week seasonal and the month-of-year seasonal components, and Dds
t is

the deseasonalized load. The deseasonalized load Dds
t evolves with a linear autoregressive

model Y D
t = φDY

D
t−∆t + σD

√
∆tε̃t For the hourly ERCOT energy load data we obtained,

φD = 0.9636, σ2
D = 914870.

4.4. Stochastic Dynamic Optimization Formulation

We formulate this multi-stage stochastic optimization problem using stochastic dynamic

programming. The contribution function at every time step t then is the dollar value of

energy sold minus the amount bought from the grid, assuming that an identical energy

price is used for both withdrawal and injection:

C(St, xt) = PtDt−Pt
(
xGRt +xGDt

)
. (26)

The goal is to find a policy which maximizes the accumulated expected discounted future

rewards,

max
π

E

[
∞∑
t=0

γtC (St,X
π(St))

]
. (27)

We define the state variable, St = (Rt, Et, Dt, Pt), and the post-decision state variable,

Sxt = (Rt+∆t(x), Et, Dt, Pt). Recall that Rt is the fraction of the storage device that is

full, Et is the current amount of wind energy, Dt indicates the current energy demand,

and Pt is the current spot price of electricity selling to (or purchasing from) the electrical

grid. The exogenous information process is defined as the random changes in the state of

the system, Wt+∆t = {Êt+∆t, D̂t+∆t, P̂t+∆t}, explaining exogenous changes in Et, Dt and Pt,

that can may be state dependent as well as time dependent.

Similar power system models have been studied in Moazeni et al. (2015) and Moazeni

et al. (2017) for illustrating other algorithmic strategies. Proposition 3 in Moazeni et al.

(2017) establishes a closed-form solution for the exact stochastic dynamic optimization

in the finite time horizon setting, under the assumptions that charging and discharging

efficiency rates are one ηcharge = ηdischarge = 1 and the storage device can be fully charged

and discharged over ∆t. Under these assumptions, Proposition 3 in Moazeni et al. (2017)

shows that the optimal policy is a two-threshold policy, ruled by the sign of Pt−E[Pt+1|St],
i.e., charge the storage device if Pt ≤E[Pt+1|St] and discharge if Pt ≥E[Pt+1|St].
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Next section explains our computational results from the least-squares API algorithms

in §2, the direct policy search described in §3, for problem (27), and compares the per-

formance of the computed policies to the optimal policies from exact stochastic dynamic

optimization.

5. Numerical Experiments

Our main objective in this section is to assess the performance of the two variants of the

least-squares API, and direct policy search. Throughout, the time step is ∆t= 15 min and

the discount factor is γ = 99.90%. We found that discount factors of γ = 99% or smaller

produce policies that are relatively myopic, and do not store energy for extended periods.

5.1. Benchmark Problems with Discrete State Spaces

We first consider finite, discretized state and action spaces with a fixed probability transi-

tion matrix. An exact solution for an infinite horizon problem can be found using the value

iteration method, see e.g. Puterman (1994). Computing these optimal policies typically

requires approximately two weeks of CPU time. In this method, V 0(s) is initialized to a

constant for all states s in the state space, and at each iteration n, the algorithm updates

the value function at each state using

V n(s) = max
x

{
C(s,x) + γ

∑
s′∈S

V n−1(s′) Pr(s′|s,x)

}
, for every s∈ S.

To establish a set of benchmark problems, we consider 20 instances of the energy storage

operation optimization problem explained in §4. Table 1 summarizes these problems. Here,

problem type “Full” refers to the problem in Figure 2 with energy from the wind source and

the grid serving an electricity demand. In the absence of a wind source and demand, the

storage device is used solely to buy/sell the electricity from/to the grid. This model consid-

ers only trading between the storage and the grid to take advantage of price variations and

is referred to as the battery arbitrage problem. In Table 1, the problem type “BA” refers

to a battery arbitrage problem. We discretized the state space in the benchmark problems

and then created fixed probability transition matrices for the exogenous information pro-

cess in order to create a true discrete process. Table 1 also reports how finely each state

variable is discretized (the size of the state space for a particular problem is the product

of each of the discretization levels). We then list the average maximum wind capacity

divided by the load, the storage capacity divided by the load over an hour, the round trip
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efficiency (RTE) of the storage device, and the maximum charge and discharge rate of the

storage device. For example, C/10 indicates that the storage device can be fully charged or

discharged within 10 hours. The transition matrix of the electricity prices was fitted using

the PJM Western Hub real time prices (with and without time of day). The transition

matrix of the load was fitted using the load of the PJM Mid-Atlantic Region (with time

of day). The transition matrix for the wind was fitted using data from wind speeds near

the Sweetwater Wind Farm. For Problems 1− 16 the state space is resource level, wind

energy, and electricity price, i.e., St = (Rt,Et, Pt). For these experiments, time and demand

are held fixed in order to keep the benchmark problems computationally tractable, as the

exact value iteration, even for these simplified problems, requires approximately two weeks

on a 3Ghz processor. For Problems 17− 20, the state variable is given by St = (τt,Rt, Pt),

where τt is the time-of-day (96 corresponding to 15-minute intervals in a day), Rt is the

resource level, and Pt is the electricity price. To implement the least-squares API methods,

quadratic basis functions (φk(S) = SiSj for i, j = 1, · · · , |S|) are used.

Problem Number of Discretization Levels Parameters
Number Type Time Resource Price Demand Wind Wind Storage RTE Charge Rate

τt Rt Pt Dt Et
Et

Dt

Rt

Dt

1 Full 1 33 20 1 10 0.1 2.5 .81 C/10
2 Full 1 33 20 1 10 0.1 2.5 .81 C/1
3 Full 1 33 20 1 10 0.1 2.5 .70 C/10
4 Full 1 33 20 1 10 0.1 2.5 .70 C/1
5 Full 1 33 20 1 10 0.2 2.5 .81 C/10
6 Full 1 33 20 1 10 0.2 2.5 .81 C/1
7 Full 1 33 20 1 10 0.2 2.5 .70 C/10
8 Full 1 33 20 1 10 0.2 2.5 .70 C/1
9 Full 1 33 20 1 10 0.1 5.0 .81 C/10
10 Full 1 33 20 1 10 0.1 5.0 .81 C/1
11 Full 1 33 20 1 10 0.1 5.0 .70 C/10
12 Full 1 33 20 1 10 0.1 5.0 .70 C/1
13 Full 1 33 20 1 10 0.2 5.0 .81 C/10
14 Full 1 33 20 1 10 0.2 5.0 .81 C/1
15 Full 1 33 20 1 10 0.2 5.0 .70 C/10
16 Full 1 33 20 1 1 0.2 5.0 .70 C/1
17 BA 96 33 20 1 1 - - .81 C/10
18 BA 96 33 20 1 1 - - .81 C/1
19 BA 96 33 20 1 1 - - .70 C/10
20 BA 96 33 20 1 1 - - .70 C/1

Table 1 Benchmark problems with Discrete State Spaces: number of discretization levels for time (1=steady

state) and load (1=deterministic).
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To specify reasonable values for the maximum number of policy evaluation and policy

improvement iterations, M and N in Figure 1, we implement the LSAPI method using

instrumental variables Bellman error minimization (IVBEM) on the 17th benchmark prob-

lem several times. For this test problem, as illustrated in Figure 3, most of the improvement

has occurred before N = 5000 iterations of policy evaluations and M = 30 iterations of

policy improvement step. Thus, in the rest of this section, we fix N = 5000 and M = 30.

Figure 3 Progress of the least-squares API method using IVBEM policy evaluation for benchmark problem 17,

as a function of N (Left Plot) for M = 30, and as a function of M (Right Plot) for N = 5000.

5.2. Least-Squares API and Direct Policy Search for Benchmark Problems

This section compares the least-squares API methods, the myopic policy, and the direct

policy search based on KGCP. Subsequently, the policy computed by the algorithm 1 with

the policy evaluation θ̂LSBEM, in equation (10), is referred to as LSAPI. We also refer to the

policy computed by the algorithm 1 with the policy evaluation θ̂IVBEM in equation (11) by

IVAPI. The myopic policy discharges the storage device as quickly as possible and keeps

the charge level at its minimum allowed level since then.The value of the myopic policy is

still positive due to the wind source.

We run each algorithm 100 times. For each run of the algorithms, the final policies

computed by each algorithm are evaluated on the same set of sample paths, ω ∈Ω, where

ω is generated from the discretized exogenous information process. We then record the

average percentage of optimality across the 100 runs. For a policy π, the average percentage

of optimal is computed by

% of optimality =
1

|Ω|
∑
ω∈Ω

V̂ π (S0(ω))

V ∗ (S0(ω))
, (28)
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where ω is a sample path of the randomness in the state transitions, and S0(ω) is the start-

ing state which has been randomly generated from a uniform distribution. Here, V̂ π(S0(ω))

is the value of the policy π run on the sample path ω, starting at the state S0(ω). In

equation (28), V ∗(S0(ω)) is the true value of the optimal policy for state S0(ω) computed

using the exact value iteration method.

Similarly, we implement the direct policy search using KGCP 100 times, and compute

the average percent of optimal and its standard deviation. To implement direct policy

search using KGCP, we budget ourselves to simulating 50 sequentially chosen policies, after

which the KGCP algorithm must choose what it believes to be the best policy.
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Figure 4 Performance (percentage of optimality) and 95% confidence intervals of different policies for 20 bench-

mark problems in Table 1. Policies: Least-Squares API with instrumental variables (IVAPI), Least-

Squares API with least-squares Bellman error minimization (LSAPI), myopic policy (Myopic), direct

policy search (Direct).

Figure 4 illustrates the percentage of optimal corresponding to each of these policies for

the benchmark problems. This figure shows that IVAPI significantly outperforms LSAPI

for all benchmark problems, but still underperforms the optimal policy by a wide margin.

Direct policy search produces solutions that are on average 91.80% of optimal, and are

always at least 70% of optimal for Problems 1− 16. This suggests that for the benchmark

problems on the application of interest, direct policy search is more robust relative to the

least-squares API methods.
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In order to reduce the number of basis functions in the algorithms, one may consider

smaller dimensions for the post-decision state when constructing the value function approx-

imation. Figure 5 shows the results using three value function approximations: (1) all three

state variables Rt, Et, and Pt, (2) Rt and Pt, (3) Rt. It is observed that using Rt as the

only domain of the post-decision value function results in quite poor performances for most

benchmark problems. Using both Rt and Pt appears to do fairly well overall, although

using all of the state variable dimensions yields the best results.
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Figure 5 Performance (percentage of optimality) and 95% confidence intervals of the IVAPI policy for the 20

benchmark problems in Table 1, when only certain dimensions of the post-state are included in the

post-state value function approximation.

5.3. Benchmark Problems with Continuous State Spaces

In this section, we consider a set of 10 problems with continuous state spaces, continuous

actions, and the state transitions for the energy storage optimization problem in §4. Table 2

summarizes these problems. For Problems 1-3, the electricity prices and demands are time-

dependent and stochastic. Problems 4-10 are continuous steady-state problems. For these

problems an optimal policy is not available. However, we compare both least-squares API

policies and the myopic policy.

Figure 5.3 illustrates the average objective value for the 10 problems described in Table 2.

This figure shows that IVAPI consistently outperforms LSAPI, suggesting that again the

use of instrumental variables for the policy evaluation phase of the least-squares API
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Problem Number of Discretization Levels Parameters
Number Type Time Resource Price Demand Wind Wind Storage RTE Charge Rate

τt Rt Pt Dt Et
Et

Dt

Rt

Dt

1 Full 96 Cont. Cont. Cont. Cont. 0.1 2.5 .81 C/10
2 Full 96 Cont. Cont. Cont. Cont. 0.1 5.0 .81 C/10
3 BA 96 Cont. Cont. 1 1 - - .81 C/10
4 Full 1 Cont. Cont. Cont. Cont. 0.1 5.0 .81 C/10
5 Full 1 Cont. Cont. Cont. Cont. 0.1 2.5 .81 C/1
6 Full 1 Cont. Cont. Cont. Cont. 0.1 2.5 .70 C/1
7 BA 1 Cont. Cont. 1 1 - - .81 C/10
8 Full 1 Cont. Cont. Cont. Cont. 0.1 5.0 .81 C/1
9 Full 1 Cont. Cont. Cont. Cont. 0.1 5.0 .70 C/1
10 Full 1 Cont. Cont. Cont. Cont. 0.2 2.5 .81 C/1

Table 2 Benchmark problems with Continuous States. Problems 1-3 have time-dependent stochastic demands

and prices. Problems 4-10 are steady-state.

method brings value. Even for some of these problems, the myopic policy outperforms the

LSAPI policy.
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Figure 6 Average objective (in millions) corresponding to the IVAPI, LSAPI, and Myopic policies for the bench-

mark problems with continuous states described in Table 2.

Given that the IVAPI outperforms the alternative least-squares API approach, Figure

7(a) depicts a sample path of the IVAPI policy for Problem 1 in Table 1. The storage device

is charged when electricity prices are low and discharged when electricity prices are high.

We also note that the storage device fully discharges (below 20%) relatively infrequently.

Figure 7(b) illustrates the electricity price and Rt from implementing the IVAPI policy for

Problem 5 in Table 2 on one random sample path. Similar to the previous case, this plot

shows that the policy tends to start charging the battery at night when electricity prices
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are low and then discharges the storage device throughout the day when electricity prices

are higher.
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Figure 7 Electricity Price and Storage Level Rt corresponding to the IVAPI policy for one benchmark problem

from Table 1 (Left Plot) and one problem from Table 2 (Right Plot).

6. Discussion and Limitations

The findings in the previous section suggest that for our benchmark problems and imple-

mentation choices, IVAPI is a promising and scalable algorithm. The direct policy search

approach, which directly seeks the parameters of a policy function approximation, is capa-

ble to come closer to optimality compared to the other ADP algorithms considered in

this paper. However, direct policy search quickly becomes intractable as the number of

parameters in the policy function approximation increases. This challenge arises for exam-

ple for non-stationary problems or as the number of basis functions in the value function

approximation grows. In addition, choosing an appropriate search domain for direct policy

search is another significant complication as the number of basis functions increases. A

computationally tractable approach for the direct policy search is proposed Moazeni et al.

(2017), where a sufficient condition for the optimality of the direct search policy and a

bound on the suboptimality are theoretically established.

There are several limitations associated with our findings. The computational compar-

ison in this paper is limited to a subset of approximate dynamic programming methods,

namely, two least-squares API methods, direct policy search, and myopic policy. There are

alternative dynamic programming approaches based on various varieties of value iteration
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(Puterman 1994, de Farias and Van Roy 2000, Bertsekas and Tsitsiklis 1996) with approx-

imate value functions, as well as the approximate linear programming approach, made to

handle approximations based on basis functions (de Farias and Van Roy 2003, 2004).

Another limitation of our study is that our findings are based on some choices in the

implementation of these algorithms. A least-squares API method uses as parameters the

number of policy improvements and simulation sample size, M and N . While we chose

conservatively large values for these parameters, and used them consistently for all bench-

mark problems, further sensitivity analysis study could be done to assess the robustness

of the findings with respect to these choices. Furthermore, as with any simulation-based

approach, the outcomes and standard errors estimated from replications remain sensitive

to the underlying stochastic processes and set of drawn samples.

Similarly to most other approximate dynamic programming techniques, the API methods

and direct policy search rely on a parametrized value function approximation architecture.

As Lagoudakis and Parr (2003) states, “the choice of basis functions is a fundamental

problem in itself.” The present study was carried out using a linear architecture with

quadratic basis functions, which is a frequent choice in the literature Bradtke and Barto

(1996), Lagoudakis and Parr (2003), Wang et al. (2015), but many other options exist for

the basis functions. While we conducted sensitivity analysis on the degree and number of

basis functions before opting for quadratic basis functions, our comparisons and findings

are based on the value function approximation architecture that was adopted.

The energy storage problem can be cast as a type of inventory management model with

multiple sources of uncertainty. The findings in this paper are limited to benchmark prob-

lems developed for the energy storage model. Additional computational studies and com-

parisons against other optimal benchmark problems could also be insightful and broaden

the applicability of the findings.

We fixed the inputs of the algorithms (such as basis functions, discount factor, number

of simulations, etc) across the benchmark problems and across the algorithms. Therefore

differences in performances observed between these 3 algorithms are merely attributed to

the choice of the algorithm, and not the implementation details (such as basis functions).

7. Conclusions

This paper studies four variants of LSAPI methods, based on Bellman error minimization

policy evaluation. We consider least-squares Bellman error minimization, Bellman error
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minimization using instrumental variables, least-squares projected Bellman error mini-

mization, and projected Bellman error minimization using instrumental variables. Policy

evaluations using Bellman error minimization with instrumental variables is equivalent to

projected Bellman error minimization policy evaluations.

The LSAPI methods were then evaluated numerically using a stochastic dynamic opti-

mization problem arising in energy storage control. We create a library of benchmark

problems to compare the different algorithmic strategies including least-squares API with

two variants of the policy evaluation phase, as well as a Knowledge Gradient based direct

policy search method.

Several interesting conclusions can be drawn from our numerical work. Bellman error

minimization using instrumental variables appears to improve significantly over the least-

squares API method with basic Bellman error minimization, but otherwise did not work

well when compared to the optimal benchmark, producing results that ranged between 60%

and 80% of optimal. Direct policy search performed much better, with results averaging

over 90% of optimal. Given that this is a problem that is ideally suited to least-squares

API, it calls into question whether this is a method that can be counted on to produce

good results.

This research suggests that there are clear advantages to using direct policy search,

possibly in conjunction with approximate policy iteration. We suggest using least-squares

API to find good values of the regression parameters, and then apply direct policy search to

improve the policy in the region of the fitted regression parameters. For certain problems,

it may actually be advantageous to leave variables out of the value function approximation

to simplify the policy search process. The challenge is that in its derivative-free form,

policy search does not scale easily with the dimension of the parameter space. This may

be a major limitation in time-dependent applications, where we may need to estimate a

different set of parameters for each time period.

Appendix A: The Instrumental Variable Method

The instrumental variable method (IVM) is a well known technique for dealing with errors in the explanatory

variables of a regression problem, and provides a way to obtain consistent parameter estimates, see e.g.

Cameron and Trivedi (2005), Young (2011). Consider the linear model in the matrix form Y =Xθ, where

Y is a N × 1 vector of response variables, X is a N ×K matrix of explanatory variables, and θ is a K × 1

vector of weights. Let X ′ and Y ′ be observable values of the true values X and Y . Denote the errors in the

observed values of X and Y by X ′′ and Y ′′, respectively. Hence we have X ′ = X +X ′′ and Y ′ = Y + Y ′′.
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When the observation of X and the error in X are correlated, the least squares estimator can be biased and

inconsistent, see e.g. Chapter 4 of Cameron and Trivedi (2005). A properly chosen instrumental variable can

yield a consistent estimator for θ. Suppose that an instrumental variable, Zj , exists such that it is correlated

with the true Xl, the lth column of X, but uncorrelated with the errors in the observations of X and Y .

Denote Σjl := Cov[Zj ,Xl], for j, l= 1, · · · ,K. Assume that the matrix Σ has full rank K. For the instrument

Z, the instrumental variables (IV) estimator is defined as

θ̂IV = (Z>X ′)−1Z>Y ′. (29)

Note that θ̂IV is uniquely defined when Z>X
′

has full rank K.

Proposition A.1 Consider the model Y = Xθ with observable values X ′ and Y ′, and error terms X ′′

and Y ′′. Suppose that the noise in X and Y satisfy E[Y
′′
] = 0, and E[X

′′

ij ] = 0, for every i = 1, · · · ,N

and j = 1, · · · ,K. Suppose that limN→∞
1
N

∑N

i=1ZijXil = Σjl, for j, l = 1, · · · ,K, and Cov[Zij , Y
′′

i ] =

Cov[Zij ,X
′′

il ] = 0, for every i= 1, · · · ,N, and j = 1, · · · ,K. In addition assume that limN→∞
1
N

∑N

i=1ZijY
′′

i =

limN→∞
1
N

∑N

i=1ZijX
′′

il = 0, for every j = 1, · · · ,K. Then the IV estimator θ̂IV is a consistent estimator of

θ, i.e., θ̂IV → θ with probability one, as N →∞.

For a proof of Proposition A.1 and further discussion on IV estimators, see Cameron and Trivedi (2005).

Appendix B: Consistency of IVPBEM Policy Evaluation

This appendix shows that θ̂IVPBEM in equation (15) is consistent (converges in probability to the true

weights). The following discussion remains valid even when the state space is continuous or the discount

factor is γ = 1. More formally, we aim to show that θ̂IVPBEM is a consistent estimator for projected Bellman

equation. Using the notations in Appendix A, define

X
def
= Πt−1(Φt−1− γE[γΦt|{Sxt−1}]), (30)

X ′
def
= Πt−1(Φt−1− γΦt), (31)

Y
def
= Πt−1Ct, (32)

Y ′
def
= Πt−1Ct, (33)

where Ct is the vector with entries Ct,n
def
= E[C(St,n,X

π̂(St,n|θ))|Sxt−1,n]. Recall that Φt−1, Φt, and Ct are as

in equation (7) corresponding to the policy π̂.

Theorem B.1 Let assumption 2.1 hold and the covariance matrix Σ, with elements Σjl = Cov[(Φt−1)j , Xl],

have full rank K. Suppose that the rows of Φt−1 are i.i.d. , E[|(Φt−1)ij(Y
′−Y )i|]<∞, and E[|(Φt−1)ij(X

′−

X)il|]<∞, for j, l= 1, · · · ,K. Then the estimator θ̂IVPBEM in equation (15) is a consistent estimator.

Proof: Define the instrumental variable Z
def
= Φt−1. It thus follows the notations X ′ and Y ′ in equa-

tions (31) and (33) that θ̂IVPBEM in equation (15) has the form (Z>X ′)−1Z>Y ′. According to Proposition A.1

in Appendix A the IV estimators are consistent estimators of θ for the model Y =Xθ. Therefore, to complete

the proof of Theorem B.1, it is sufficient to show that the assumptions for Proposition A.1 hold.
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From the description of Y and Y ′ in (32) and (33), we have Y ′′ = Y ′−Y = Πt−1(Ct−Ct). Therefore,

E[Y
′′
] = E[Πt−1(Ct−Ct)] = E

[
E[Πt−1(Ct−Ct)|{Sxt−1}]

]
=E[Πt−1 E[(Ct−Ct)|{Sxt−1}]︸ ︷︷ ︸

=0

] = 0. (34)

Next, it follows from equations (30) and (31) that the mean of the noise in the observation of the explanatory

variables, X
′′

=X
′ −X, equals zero:

E[X
′′
] = E[X

′ −X] = E
[
Πt−1(Φt−1− γΦt)−Πt−1(Φt−1−E[γΦt|{Sxt−1}])

]
= γE

[
Πt−1(E[Φt|{Sxt−1}]−Φt)

]
.

Therefore, using E
[
Πt−1(E[Φt|{Sxt−1}]−Φt)

]
=E

[
E[Πt−1(E[Φt|{Sxt−1}]−Φt)|{Sxt−1}]

]
, we have

E[X
′′
] = γE

[
Πt−1E[E[Φt|{Sxt−1}]−Φt|{Sxt−1}]

]
= γE[Πt−1(E[Φt|{Sxt−1}]−E[Φt|{Sxt−1}]︸ ︷︷ ︸

=0

)] = 0. (35)

We next show that Cov[Zij , Y
′′

i ] = 0, for every i, j:

Cov
[
Zij , Y

′′

i

]
= E[ZijY

′′

i ]−E[Zij ]E[Y
′′

i ]︸ ︷︷ ︸
=0

=E
[
(Φt−1)ij(Πt−1(Ct−Ct))i

]
=E[(Φt−1)ije

>
i Πt−1(Ct−Ct)],

where ei denotes the column vector of all zeros except at the ith element which equals 1. Therefore,

Cov
[
Zij , Y

′′

i

]
=E

[
E[(Φt−1)ije

>
i Πt−1(Ct−Ct)|{Sxt−1}]

]
=E[(Φt−1)ije

>
i Πt−1 E[Ct−Ct|{Sxt−1}]︸ ︷︷ ︸

=0

] = 0. (36)

Next we show that for every i, j, and l, Cov[Zij ,X
′′

il ] = 0:

Cov[Zij ,X
′′

il ] = E[ZijX
′′

il ]−E[Zij ]E[X
′′

il ]︸ ︷︷ ︸
=0

=E[Zij(X
′

il−Xil)] = E[Zije
>
i (X

′ −X)el].

Hence,

Cov[Zij ,X
′′

il ] = γE[(Φt−1)ije
>
i Πt−1(E[Φt|{Sxt−1}]−Φt)el]

= γE[E[(Φt−1)ije
>
i Πt−1(E[Φt|{Sxt−1}]−Φt)el|{Sxt−1}]]

= γE[(Φt−1)ije
>
i Πt−1E[E[Φt|{Sxt−1}]−Φt|{Sxt−1}]el]

= γE[(Φt−1)ije
>
i Πt−1 (E[Φt|{Sxt−1}]−E[Φt|{Sxt−1}])︸ ︷︷ ︸

=0

el] = 0. (37)

The assumptions stated in the theorem and the law of large numbers imply that limN→∞
1
N

∑N

i=1ZijXil =

Cov[Zj ,Xl], and for every j = 1, · · · ,K, limN→∞
1
N

∑N

i=1ZijY
′′

i = 0 and limN→∞
1
N

∑N

i=1ZijX
′′

il = 0. Thus,

Proposition A.1 can be applied. Q.E.D.

Appendix C: Proof of Proposition 2.1

Proof: We first show that IVBEM and IVPBEM estimators in equations (11) and (15) are equal. Recall

that Πt−1 = Φt−1(Φ>t−1Φt−1)−1Φ>t−1. Starting with equation (15), we have

θ̂IVPBEM =
(
(Φt−1)>Πt−1(Φt−1− γΦt)

)−1
(Φt−1)>Πt−1Ct

=

(Φt−1)>(Πt−1Φt−1︸ ︷︷ ︸
Φt−1

−γΠt−1Φt)


−1

(Φt−1)>Φt−1((Φt−1)>Φt−1)−1︸ ︷︷ ︸
IK×K

Φ>t−1Ct

=

Φ>t−1Φt−1− γ (Φt−1)>Φt−1((Φt−1)>Φt−1)−1︸ ︷︷ ︸
IK×K

(Φt−1)>Φt


−1

Φ>t−1Ct

=
(
Φ>t−1(Φt−1− γΦt)

)−1
Φ>t−1Ct = θ̂IVBEM.
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Next, we show equations (11) and (14) are equivalent. We have

θ̂LSPBEM =
(

(Πt−1(Φt−1− γΦt))
>

(Πt−1(Φt−1− γΦt))
)−1

(Πt−1(Φt−1− γΦt))
>

Πt−1Ct

=
(
(Φt−1− γΦt)

>Π>t−1Πt−1(Φt−1− γΦt)
)−1

(Φt−1− γΦt)
>(Πt−1)>Πt−1Ct.

It follows from Πt−1 = Φt−1(Φ>t−1Φt−1)−1Φ>t−1 that (Πt−1)>Πt−1 = Πt−1 = Π>t−1. Hence, θ̂LSPBEM equals(
(Φt−1− γΦt)

>Πt−1(Φt−1− γΦt)
)−1

(Φt−1− γΦt)
>Πt−1Ct

=
(

(Φt−1− γΦt)
>

Φt−1

(
Φ>t−1Φt−1

)−1
Φ>t−1(Φt−1− γΦt)

)−1

(Φt−1− γΦt)
>Φt−1(Φ>t−1Φt−1)−1Φ>t−1Ct

=
(
Φ>t−1(Φt−1− γΦt)

)−1 (
(Φ>t−1Φt−1)−1

)−1 (
(Φt−1− γΦt)

>Φt−1

)−1
(Φt−1− γΦt)

>Φt−1(Φ>t−1Φt−1)−1Φ>t−1Ct

=
(
Φ>t−1(Φt−1− γΦt)

)−1
(Φ>t−1Φt−1)

(
(Φt−1− γΦt)

>Φt−1

)−1
(Φt−1− γΦt)

>Φt−1︸ ︷︷ ︸
IK

(Φ>t−1Φt−1)−1Φ>t−1Ct

=
(
Φ>t−1 (Φt−1− γΦt)

)−1
(Φ>t−1Φt−1)(Φ>t−1Φt−1)−1︸ ︷︷ ︸

IK

Φ>t−1Ct = θ̂IVBEM.

This completes the proof of θ̂LSPBEM = θ̂IVBEM. Q.E.D.
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