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Abstract

The problem of identifying a specific design or architecture that satisfies all the system requirements is complex. This problem is
further complicated in the presence of uncertainty and risk. When a requirement is subject to uncertainty, there are a number of
approaches available to systems engineers, each of which has its own pros and cons. Classical robust optimization is an attractive
approach in optimization under uncertainty, as it selects a design with the best performance when the worst-case scenario occurs.
In this framework uncertainty is described deterministically through uncertainty sets. The specification of these sets directly
impacts characteristics of the robust counterpart problem and quality of the robust solution. In particular, depending on the
specifications of the uncertainty sets, there can be a significant chance that the robust formulation becomes infeasible, i.e., no
architecture satisfies all the system requirements, while the model is feasible with high probability when the uncertainty in
requirements are modeled probabilistically. This paper investigates the effect of uncertainties on the feasibility of the design
selection problem and introduces a novel measure of infeasibility.
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1. Introduction

The selection of a specific design or architecture for a system is an important component of the systems engineering
process. Given a set of requirements, capturing objectives and constraints, there may be several designs that will
satisfy them at various levels. More precisely, the designs that fully satisfy the constraints, the suitable designs,
perform differently in achieving the objectives. The purpose of the selection process is then to identify a design, or
designs, that better achieve the objectives, thus maximizing the utility for the stakeholders.
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When the constraints are well defined and the suitability of a design can be precisely measured, the search for an
optimal configuration is about finding the maximum of the objective function. However, when the constraints are
subject to uncertainty, both the modeling and optimization should take into account these uncertainties. One of these
modeling and solution strategies is the robust approach, which tries to select a design with the optimum of the
objective function under the worst-case scenario when all the uncertainties act upon the constraints in the direction
of shrinking the design space. Selecting a design with the robust optimization approach means to build a system that
will work under all scenarios with a performance at least as expected, and likely better than expected, when not all
of the uncertain events happen simultaneously. This approach is preferred for the design of those systems in which
failing a requirement cannot be tolerated and acceptable under any circumstances.

In this paper, two concerns regarding the classical robust optimization, due to its significant reliance on pre-
specified sets for uncertainties, are rigorously discussed. First, we show that, the robust counterpart problem may
become infeasible, even when a feasible design exists for many realized values of the uncertain inputs. Thus, in such
cases, models explaining uncertainties in the requirements must be re-adjusted and re-specified in order to attain a
feasible design space. In addition, even when the robust counterpart problem is feasible and a robust solution can be
found, the system’s performance at the robust solution might not be satisfactory and may be significantly worse than
the objective function value at the nominal design. This conservativeness of the approach has been previously noted
in the literature'. Whence to reduce conservativeness of the robust solution, similar to the previous case, the
uncertainty sets need to be redefined.

Second, we provide an argument that for an effective adjustment, uncertainty sets of all constraints and the objective
function must be taken into account simultaneously, in accordance with the claim that pairwise requirement
comparison does not help in conflict resolution’. Specifying the parameters individually might be ineffective.
Highlighting these uncertainty sets-related shortcomings of the classical robust optimization can motivate further
research to develop more favorable approaches in the systems engineering process to obtain a robust solution.

2. Literature Review

The problem of design selection has been studied extensively in the recent past. At MIT this problem is labeled as
Tradespace Exploration®. The tradespace exploration paradigm allows for the search of an optimal configuration, or
to be more precise, a set of Pareto optimal configurations that take into account the utility of the system and its cost.
This approach is based on the consideration that typically space systems are evaluated using four metrics: cost, time,
quality, and risk®. A different approach considers also the market potential of the design, taking into account
competitor products’, and the possibility of generating a product line out of a certain design, thus looking for
flexibility in the design®. Both these methods focus mainly on the evaluation of design alternatives, and the selection
of the best ones, without thinking whether the design space in which they are searching is in fact an optimal one.

The shape of the design space is defined by requirements representing constraints that the system needs to satisfy.
The work of Salado on conflicting requirements’ explains how some sets of requirements can define design spaces
that have no solution, and that it is necessary to consider all the requirements at the same time, thus showing that
pairwise comparison can hide the conflict. This model assumes that requirements are exact, and there is no
uncertainty about their formulation.

Uncertainties are often considered at early phases of the system design'’. Several efforts have been made towards a
standardization of the type of uncertainties to be considered'"'>. When uncertainties are considered, one of the
attractive approaches to address optimization under uncertainty is the (classical) robust optimization'>'*. In robust
optimization, uncertainty is defined deterministically through uncertainty sets, which include all or most possible
realizations of the uncertain inputs. Robust optimization, then, offers a solution which has the best worst
performance when inputs belong in the given uncertainty sets. Most of the current literature on robust optimization
is devoted to the applications of robust optimization or to develop tractable algorithms to solve the minimax robust
counterpart problem, both under the assumption that prior uncertainty sets are given. This critical assumption about
the decision environment is, however, a large burden on the decision maker. Determining uncertainty sets is a
difficult task. Firstly, there are not many statistical techniques and studies available on constructing the uncertainty
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sets. Secondly, as it is shown in'">, the robust solution and its objective function value can be very sensitive to
changes in parameters of the uncertainty sets.

3. Methodology

In this section, we outline the model of data uncertainty considered in this paper. The design goals are represented as
an objective function that will be maximized. Suitability (or feasibility) of designs are defined by a set of
constraints. For the purpose of illustration, we concentrate on constraints and objectives which are linear in design
parameters with (well-defined) deterministic coefficient matrix. Here, we assume that solely the coefficients of the
objective function and the entries of the right-hand-side vector are subject to uncertainty. In reality, not all the
system requirements will be linear, but this assumption simplifies the model and allows us to show the effects of
uncertainty.

3.1. Robust optimization and design selection problem

An uncertain linear programming problem with a deterministic coefficient matrix A € R™*" is of the form:

T

max c'x
x €RM -~ (1)
st. Ax<b

where ¢ and b are n-vector and an m-vector, whose entries are subject to uncertainty, and represent respectively the
importance that stakeholders give to the various variables and the values of the constraints. Throughout, superscript
T denotes transpose of a vector or a matrix. Without loss of generality in the following discussion, we assume that
all of the b;s are uncertain.

Following the common practice in robust optimization'”, we assume that the uncertain inputs, ¢ and b, depend on a
set of primitive independent uncertainties {Z,})~,, where (Z;, -, Zy)belongs in a set defined through a vector norm
| -|I. The choice of norm may depend on the statistical distribution assumption of uncertain parameters or a
subjective opinion of the decision maker or the model user.

N
EACHE {Ei =b® + ZAbim 3, 2= (2, %) ERY,|Z|| < n} i=1-,m
= N )
EACHE: {f =04 > A0 21 7= (3,0, 5) € RY,|2]] < Q}
=1

T
Here, c® and p© = (bio), e b,(,?)) are the nominal values of the data. Denote Ab; = (bi(l), e bi(N)) and
Ac = (Ac(l), e, AWV )). We assume that the directions of data perturbation are non-negative, Ab; = 0 and Ac = 0.
The parameters (), and Q; are referred to as the budgets of uncertainty for the objective function and the constraints,
respectively.

Let a; be the ith column of A”. It is easy to see that the robust counterpart of the constraint al x < b;with respect to
the uncertainty set é[bi(ﬂi) will be

alx < b{” — Q;llab, " 3)
where || - ||* denotes the dual norm given by |[u||* = sup{uTx : |[x|| < 1}.

Budget of uncertainty parameters are usually specified subjectively by the decision maker or affected by several
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elements of institutional, social, physical, economical, and environmental limitations. These are the design margins
that are used by the engineers to take into account manufacturing or integration uncertainties, or the monetary
budget margins that program managers use as a buffer in order to overcome funding uncertainties. The parameter
is mainly to control the degree of conservatism of the robust solution. As ), increases, one expects that the robust
optimal value decreases. The role of the budgets of uncertainty, ();s, are to adjust robustness of the proposed
solution. Bertisimas and Sim” suggest to select these parameters by establishing probabilistic guarantee for
feasibility under reasonable probabilistic assumptions on uncertain inputs. Some attempts to determine uncertainty
sets through risk measures have been made'®'”. However, these methods assume that the support of the risk measure
is given and is still performed constraint-wise.

Determining proper values for the parameters €, and ; is often a challenging task. An improper assignment of
these parameters may result in an infeasible robust problem; whence the model user remains with no solution. Even
when the robust counterpart problem is feasible, the stakeholders may be unsatisfied by the level of optimality or
robustness of the proposed solution. Thus, to cure infeasibility or to reduce conservativeness of an obtained robust
solution, these parameters must be modified jointly. These issues are addressed further in Sections 3.2 and 3.3.

3.2. Measure of infeasibility

We are now going to introduce a measure to quantify infeasibility of a system of linear inequalities. The
quantification of the infeasibility in the design selection problem, based only on its requirements, has the goal of
measuring by how much the constraints need to be adjusted in order to have a non-empty design space. Define, the
measure of infeasibility of the system Ax < b, as below:

0 *
o , alx — b® + Q| Aby||
D(A,b) ¥ max{0, min max
x€ERM j=1,-m ”Abl”*

This measure is scale-independent, meaning that for every positive 1 € R™, we have D(Diag()l)A,Diag(l)E) =
D(A, b). Furthermore, 0 < D(4,b) < _max Q;. Moreover, D(A, E) = 0 if and only if the feasible region of the
i=1,-m

robust counterpart problem, associated with the uncertainty sets é[bi(ﬂi), is non-empty, meaning that a robust

solution exists. However, when D(A, E) > 0 there is no x € R™ which satisfies inequalities (3), foralli = 1,---,m.
In other words, there is no design that satisfies all the constraints simultaneously, together with their margins.

The min-max problem in the definition of D(A4,b) can be computed efficiently by solving the following linear
programming problem:

in
xe]]gnl,l YPeR ¢
sit. alx — labI"y < b — Qillabl", i=1,--,m

Thus, if D(A, 5) > 0, D(A, b) is the minimum decrease in the budgets of uncertainty which guarantees a feasible
robust counterpart problem. More precisely, the system

afx < b® — (@ —)AblY, i=1,,m

is always feasible. It is worth mentioning that the definition of D(A, E) can be extended to the case when 4 is also

subject to uncertainty, by replacing al x with max, .7/ al x, where Léq is the uncertainty set of the elements in
13 ai

a;.
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3.3. Design space and a non-zero measure of infeasibility

When D(A, E) > 0, the classical robust optimization would not propose any solution to the model user leaving the
problem as an infeasible one. However, consider an uncertain problem in which the number of primitive
uncertainties equals one, i.e., N = 1, and Z is randomly uniformly distributed. Thus each b; is uniformly distributed
in the interval [bi(o) — Q;Ab;, bi(o) + Q;Ab; ] Whence, we have

Pr(Ax < b is feasible) =  Pr(Ax < b is feasible and b® — (Q; — D(4,5))Ab; < b, for all i)
+Pr(Ax < b is feasible and b — Q; — D(A,b)Ab; > b;, for some i @)
L
>Pr(Ax < b is feasible and b — (Q; — D(4,5))Ab; < by, for all i)

Using the notion of conditional probability, the probability in (4) can be rewritten as:

Pr(b® — (Q; — D(A,b))Ab; < by, fori = 1,--,m) X

_ 3 iy 5
Pr(Ax < b is feasible | b — (Q; — D(A,b))Ab; < by, fori = 1,--,m) ©)

(0)

Since the system ajx < b; "~ — (Q; — D(A, E))Abl- < b;,i =1,--,m is always feasible, the conditional probability

(5) equals 1. Hence,

Pr(Ax < b is feasible and b® — (Q; — D(A,b))Ab; < by, fori = 1,--,m) =
Pr(b®” — (Q; — D(4,5))Ab; < by, fori = 1,---,m)

Using this equality along with inequality (4), we arrive at:
Pr(Ax < b is feasible) > Pr(bi(o) — (Q; — D(A,B))Ab; < by, fori=1,--,m)

= [ [Pr(6® - @ - D(a b))k < B,)

i=1

11(-262)

i=1

where the last equality comes from the assumption that b; is uniformly distributed with support
[bi(o) - QiAbi,bi(O) + Q;Ab; ] Now assume ; = 1 foralli = 1,---,m. Thus, we get

- D(4,6)\"
Pr(Ax < b is feasible) > (1 - %) (6)

Let D(A, E) = 0.001. Thus when the optimization problem (1) has 20 constraints, i.e., m = 20, inequality (6) yields
to

Pr(Ax < b is feasible) > 0.99

This indicates that although the classical robust methodology considers the problem infeasible and proposes no
robust solution, the underlying system is feasible with probability more than 99%; in other words, the problem is
feasible for many realizations of the uncertain inputs. This is where robust optimization fails in the search of a
suitable design. The assumption that all the constraints need to be satisfied at the same time, in order to have a
robust system, will reject a large amount of designs that can easily satisfy m — 1 uncertain requirements, or even m
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requirements in case a correction to the margin is applied.

A similar result can be observed when the entries of b are independently and normally distributed. Let b; be
normally distributed with mean bi(o)and standard deviation oAb;. Table 1 presents lower bounds on the feasibility

probability of the system Ax < b, when ¢ = 0.25. This table shows that the system remains feasible with a high
probability even for a fairly large number of constraints.

Table I - Lower bounds on the feasibility probability of the system Ax < b for normally distributed b. Here, ¢ = 0.25, Q; = 1
fori=1,-+,m, and D(A,b) = 0.001.

m [ [Pr®® - @ - (4 B)ab, < B)

i=1
1500 0.95283
500 0.98402
100 0.99678
25 0.99919
15 0.99951

In such cases that the problem is feasible for many realizations of the uncertain parameters, one expects that the
chosen budgets of uncertainty are capable to offer a robust solution. This expectation, however, may not be fulfilled
unless these parameters are determined jointly and based on a systematic method. In the next section, we discuss
that the parameters determining the uncertainty sets must be reassigned (to make the robust counterpart problem
feasible) simultaneously. This is in particular important, when we are dealing with large number of constraints in the
optimization problem.

3.4. Adjustment of parameters defining the uncertainty sets

One of the shortcomings of the classical robust optimization, frequently reported in the literature, is its conservative
nature, in the sense that too much of optimality for the nominal problem may be lost in order to ensure robustness'.
One of the remedies suggested in the literature to find a less conservative robust solution has been to use different
vector norms for a fixed budget of uncertainty. Since norms are related to each other:

Izl < llzll, < llzlly < VNIIzll, < Nzl

a smaller norm results in a bigger uncertainty set and (most likely) a more conservative robust solution. For
example, Ben-Tal and Nemirovski' suggest to use ellipsoidal norm instead of || - ||o,. Bertsimas and Sim” propose to

use ||z||; = max {% 1z]l4, ||Z||OO}, to control the level of conservatism in the robust solution and to obtain less

conservative solutions compared to the Soyster’s method'®.

However, when the coefficient matrix A is not subject to uncertainty, inequality (3) shows that for a chosen norm
|| - || and the budget of uncertainty €, , there exists some budget of uncertainty {; , which along with another norm

. . . .. =~ Al .
|| - |l, describes the same robust feasible region. Indeed, it is enough to set Q; = Q; ::AZf::f, where ||Ab; || and ||Ab;||}
e
are dual norms of || - || and || - ||, respectively. For example, if || - || is || - |[rand || - || is || - ||, we should assign

1
bl max(FlIABIL, 1Bl
Q. = Q. LS _ 0, r

R TV P 18D

Hence, when the coefficient matrix defining the feasible region, A, is deterministic, the norm describing the
uncertainty can be fixed and the conservativeness can be solely controlled through the budgets of uncertainty. An
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inappropriate selection of these parameters, then, tends to result in an over conservative solution, if feasible at all.
To obtain a less conservative solution, the budgets of uncertainty, for both the objective function and constraints,
need to be updated. However, this readjustment may not necessarily be effective, when it is done individually. As an

example, consider a linear programming problem with four constraints and two decision variables (x,y):

max ¢ix + ¢
% 1 2y

S
IA
IA

1

1;
s.t.
1

IA

x
y

S
IA

2

where b, € [—2,0], b, € [—2, 0] with nominal values bfo) = —1 and bgo) = —1. Further,

. RO
oo ={(2)= () + Oa+ On: Gz <0}

(0)

Here, (¢; 7, céo)) = (1,1). The nominal problem will be

max x+y

xy €R
" -1<x<1,
S 1<y<1
Thus the unique nominal solution is x = —1 and y = —1, in which case the nominal optimal objective function
value equals —2. The robust counterpart problem is
min max C1x + Gy
RERICTAUI A
by <x<1,
s.t. -
b,<y<1

Thus the unique robust solution is x = 0 and y = 0, and the robust optimal objective value will be 0. This solution
does not depend on Q.. Thus the robust optimal objective function value cannot get improved even when the model
user updates Q; unless the interval uncertainty sets for b; and b,, also get adjusted. However, if in this example we
update both the uncertainty set for b; and the budget of uncertainty Q,, to b; € [-2,—0.5] and Q. = 0.5, then the
unique robust solution will be x = —0.5 and y = 0. Thus the robust optimal objective function value is decreased to
—0.25. Therefore, improvement can only be achieved when the budgets of uncertainty are updated simultaneously.

This example shows the need for an approach to balancing the optimality and robustness, in that parameters of the
uncertainty sets for the constraints as well as for the objective function are updated jointly and not individually.
Translating this result in systems engineering words, we see that the value delivered to the stakeholders cannot be
maximized by only solving the uncertainties related to their utility functions, which means that working only on
defining more precise system performances, and getting the stakeholders to sign the most precise contracts in order
to cancel any uncertainty on what are their real needs, is not going to help. There is a need to work on the
uncertainties that relate to the constraints of the problem, otherwise the optimal design will not be reached.
Therefore, a robust optimization approach should be equipped with some pre-processing, to infer as much useful
information as possible about the structure of the feasible region polytope and to detect contributing constraints and
factors to the robustness of the problem.

4. Conclusions

The classical robust optimization approach to deal with parameter uncertainty in optimization problems heavily
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lies on the description of the given uncertainty sets. In this paper, we address several shortcomings of the approach

due to this dependence. Improper values for the parameters specifying the uncertainty sets may make the robust
counterpart problem infeasible, while the problem has feasible points for many realizations of the uncertain inputs.
Furthermore, individual adjustment of these parameters, to make the problem feasible or less conservative, can be

n

th

effective. Thus updating the budgets of uncertainty must be done simultaneously. The discussion also highlights
e importance of developing efficient techniques for data pre-processing before adopting the classical robust

optimization framework, devising methods for determining uncertainty sets jointly, and proposing approaches less
dependent on prespecified uncertainty sets.
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